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Abstract

This work studies point vortices on a sphere and complex point singularities on a plane.

The motivation for the study is to get deeper understanding of the dynamics of sym-

metric configurations of point vortices and point singularities. Equations of point vortex

motion are derived from the Euler equations. Geometric description of the phase space

is given along with symplectic structure and Lie-Poisson brackets. Symplectic reduction

is performed and reduced Hamiltonian is found. Configuration matrix approach is used

to find fixed equilibrium configurations of point singularities and relative equilibrium

configurations of point vortices. Based on this method, relative equilibria in the form of

tetrahedron, octahedron, cube, icosahedron, dodecahedron are described. Using energy-

momentum method conducted study of stability of general tetrahedral and octahedral

configurations. For the cubic, icosahedral and dodecahedral cases studied stability of

superpositions of axis-symmetric configurations. For the tetrahedral, cubic and icosahe-

dral configuration regions of stability are plotted. Instability results for special cases of

cubic and icosahedral configurations are proved.

Fixed equilibrium configurations of point singularities on a plane are found. The-

orems about existence and uniqueness of the equilibria are proved. For each of the

configuration, singular value decomposition is performed. The singular values are used

to obtain probability distribution and Shannon entropy for the configurations is com-

puted. Relative equilibria for even and odd number of point singularities are described.

vii



Relative equilibria for 2, 3, 4 point singularities are studied. For higher number of sin-

gularities method of finding relative equilibria is provided.
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Preface

Study of point singularities on 2D surfaces is motivated by several models in physics.

The first and the most famous is a model point vortices on a plane. It is an old model

and even though it has been studied for more then a century, it still has a lot of open

questions. The model has found its applications in different fields of theoretical physics,

starting from fluid dynamics and ending in quantum mechanics1. Another related model

is a model of spiral vortices and sources/sinks on a plane. This is just an extension of

the point vortex model. One more extension of the point vortex model, is a model of

point vortices on a sphere. These three models can be studied in one framework, which

I am going to do in this work.

The field of vortex dynamics has started in the prominent work of H. Helmholtz

[Hel58]. In this work, Helmholtz introduced his laws of vorticity evolution and described

first principles of vortex evolution. These results have already became a classic results

and can be found in every textbook on fluid dynamics.2 Starting from Helmholtz, vor-

ticity field description became a powerful tool in the theory of continuous vector fields.

The motion of straight, parallel, infinitely thin vortex filaments (rectilinear vortices)

in incompressible inviscid fluid was one of the fields of research started by Helmholtz.

In one of the first published lectures on vortex dynamics[Kir77], Kirchhoff showed that

1Nice introduction to the applications of point vortices can be found in [Lug83].

2See for example Kirchhoff [Kir77] , Lamb[Lam32], Prandtl[Pra52], Milne-Thomson[MT55],
Batchelor[Bat67], etc.
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these filaments can be identified with points on a plane (point vortices) and their motion

is governed by Hamilton’s equations.

Model of point vortices on a sphere is a closely model. It describes motion of

thin vortex filaments in a thin spherical layer of ideal incompressible fluid. Motiva-

tion for the study in this field comes from the atmospherical sciences. Clearly, model

of point vortices on sphere gives more accurate description of geoatmospheric phenom-

ena compared to the planar vortex model. First works in this direction date back to E.

Zermello[Zer02], where he defined point vortex on a sphere and derived the equations

of motion. Recent interest was stired up by the work of Bogomolov[Bog77]. In his

article he rederived the equations of motion and showed their Hamiltonian structure.

As it was shown by Yudovich[Yud63], 2D Euler equations (in a p with bounded ini-

tial vorticity always have unique solutions. Keeping this result in mind, Marchioro and

Pulvirenti[MP94] proved that point vortices are weak solutions of planar Euler equa-

tions and justified the model by proving that regions of localized vorticity stay localized

up to a certain time T and their centers move according to the point vortex equations.

Similar result for the point vortices on a sphere was obtained by Garra[R.13].

Integrability of the point vortex equations with small number of vortices was first

proven by Gröbli[Gro77]. He proved that for three point vortices the system has 3 inte-

grals of motion in convolution and thus the system is integrable. Later Synge[Syn49],

Novikov[Nov76] and Aref[Are79] independently proved similar results. Proof of inte-

grability of three point vortex problem on a sphere was given independently by P. K. New-

ton and R. Kidambi in [KN98] and by A. V. Borisov and V. G. Lebedev in [BL98].

A curious observation of floating magnets served as one of the motivations for the

study of stability of relative equilibrium configurations of point vortices on a plane. Lord

Kelvin in his work[Tho78] pointed out similarity between point vortices on a plane and

floating magnets. After this work a lot of attention have been brought to the problem
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of stability of planar configurations of point vortices. Lord Kelvin showed that regular

vortex polygons (regular polygons with point vortices of equal strength in its vertices)

are stable relative equilibrium configurations for N < 7 and unstable for N > 7. The

question of stability forN = 7 remained open for more then a century and was answered

in the recent work by Kurakin and Yudovich[KY02], where they showed that for N = 7

regular vortex polygon is stable. Even though problem of finding equilibrium config-

urations and their stability analysis have been extensively studied there are still many

unanswered questions.

Relative equilibrium configurations of point vortices on a sphere can be described

using elegant linear algebra approach as it was show by Jamaloodean and Newton[JN06].

They showed that any given geometric configuration of point vortices on a sphere has

a corresponding configuration matrix. This matrix has nontrivial null space if and only

if the corresponding vortex configuration is in relative equilibrium. They also showed

that all the Archimedean solids are relative equilibrium configurations. Further devel-

opments of this work is done by myself and Newton[MON10]. We studied wider class

of symmetric configurations represented by Platonic solids and showed that among all

of them, only cuboctahedron and icosidodecahedron are relative equilibrium config-

urations. Another description of relative equilibrium configurations can be found in

[LMR01]. There authors enumerated all the discrete subgroups of SO(3) to classify all

the possible symmetric equilibrium configurations with equal intensities of point vor-

tices.

There are not many results on the stability of equilibrium configurations of point

vortices on a sphere. The main object of interest in most of the works are configura-

tions of vortex rings on a sphere. In [CMS03] authors study stability of longitudinal

ring of equal vortices with additional vortex at the pole on the sphere. They showed

regions of stability and conducted bifurcation analysis for small numbers of N . In two
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separate works [Hal80, LP05] authors studied stability of vortex streets on the sphere.

Stability of Platonic solids point vortex configurations have been conducted in [Kur04].

Stability of relative equilibrium configurations based on Archimedean solids have been

studied in [MON10]. All of these woks considered vortex configurations with equal

or possible two different strengths. These configurations represent spherical equivalent

of planar regular polygon configurations3. More comprehensive approach is used in

[PM98], where authors conducted stability analysis of 3 point vortex relative equilib-

rium configurations.

Another direction, which is closely related to the problem of point vortices, is dynam-

ics of complex singularities on 2D surfaces. These singularities describe motion of the

spiral vortices in the ideal fluid. Equations of motion for these type of singularities in

a plane are similar to the point vortex equations. The only difference is the intensities,

which are not real, but complex numbers. Verification of the model can be done using

hollow vortex model[SC12, CSF12, CG11]. Detailed historic review of the derivation

of point singularity equations can be found in a recent work by S. G. L. Smith[Smi11].

The work contains two parts. The first part is based on author’s publications [NO12a,

MON10]. In it we will present the background on the point vortex model, configuration

matrix approach[KN98], singular value decomposition[GVL96], Shannon entropy[NS09]

and energy-momentum method[SLM91]. Then we use these methods to study relative

equilibrium configurations. The first chapter introduces the methods and gives geomet-

ric description. The second deals with relative equilibria. And in the third chapter we

study stability.

The second part is based on authors publications [NO12b, OVV13]. There we use

the same techniques as we used in the first part, but we apply them to the different prob-

lems.The first chapter introduces the equations of motion and then we investigate its

3Nice overview of point vortex configurations on a plane can be found in [ANS+02].
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symmetries. In the second chapter of the second part we find fixed equilibria using con-

figuration matrix approach, SVD and Shannon entropy. In the last chapter we investigate

stability of the fixed equilibria.
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Part I

Point vortices on a sphere
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Chapter 1

Introduction

1.1 Equations of motion on 2D surface

Let us begin with derivation of equations of motion of N point vortices. We will start

the derivation from the general model of ideal incompressible invicid fluid and then

introduce notion of point vortex. We then show that the N point vortices represent a

weak solution of 2D Euler equations. To demonstrate the details of the derivation and to

be able to derive several forms of equations of motion, we will use general curvilinear

coordinates.

If u is a velocity field of the fluid then corresponding equations of the fluid motion

are Euler equations and have a following form


∂u
∂t

+ (u · ∇)u = 0,

∇ · u = 0.

By taking curl we get vorticity form of the Euler equations


∂ω
∂t

+ (u · ∇)ω = (ω · ∇)u,

ω = ∇× u,

∇ · u = 0.

(1.1.1)
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where ω is a corresponding vorticity field. In curvilinear coordinates (q1, q2, q3) these

equations will transform to1



∂ωi

∂t
+

3∑
k=1

 uk
Hk

∂ωi

∂qk
+

ωk

HiHk

ui∂Hi

∂qk
− uk

∂Hk

∂qi


 =

=
3∑

k=1

 ωk
Hk

∂ui

∂qk
+

uk

HiHk

ωi∂Hi

∂qk
− ωk

∂Hk

∂qi


 ,

ω1 =
1

H2H3

∂(u3H3)

∂q2

−
∂(u2H2)

∂q3

 ,

ω2 =
1

H1H3

∂(u1H1)

∂q3

−
∂(u3H3)

∂q1

 ,

ω3 =
1

H1H2

∂(u2H2)

∂q1

−
∂(u1H1)

∂q2

 ,

1

H1H2H3

∂(u1H2H3)

∂q1

+
∂(u2H1H3)

∂q2

+
∂(u3H1H2)

∂q3

 = 0,

(1.1.2)

where H1, H2, H3 are Lame’s coefficients.

In many practical applications it is reasonable to consider the fluid motion to be 2D

motion. For example in geophysics, because the height of atmosphere is small compared

to the radius of the planet, atmospheric motion can be regarded as motion of ideal fluid

in an infinitely thin spherical shell.

Typically, to derive 2D equations of fluid motion in a thin shell, one assumes that

vector fields are independent of one of the coordinates. For the velocity field this

1Detailed derivation of these equations can be found in [KKR64].
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means that we assume u(q1, q2, q3) = u(q1, q2) and then from (1.1.2) we will get that

(ω1, ω2, ω3) = (0, 0, ω) and



∂ω

∂t
+
u1

H1

∂ω

∂q1

+
u2

H2

∂ω

∂q2

= 0,

ω =
1

H1H2

∂(u2H2)

∂q1

−
∂(u1H1)

∂q2

 ,

1

H1H2

∂(u1H2)

∂q1

+
∂(u2H1)

∂q2

 = 0,

(1.1.3)

From the third equation in (1.1.3) we can see that the velocity field can be described

using stream function ψ such that (u1, u2) = ∇⊥ψ, or


u1 =

1

H2

∂ψ

∂q2

,

u2 = −
1

H1

∂ψ

∂q1

.

(1.1.4)

With this substitution equations (1.1.3) will transform to



ω = −
1

H1H2

 ∂

∂q1

H2

H1

∂ψ

∂q1

+
∂

∂q2

H1

H2

∂ψ

∂q2


 ,

1

H1H2

∂ω
∂t

+
∂ψ

∂q2

∂ω

∂q1

−
∂ψ

∂q1

∂ω

∂q2

 = 0,

(1.1.5)

Motion of thin vortex filaments oriented orthogonally to the 2D surface can be

described by the model of a point vortex2.

2Proof of the localization property and validation of the model local in time for the planar case can be
found in Marchioro’s book[MP94]. Proof of the same property for the sphere can be found in recent work
by Garra[R.13].
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Definition 1.1.1. Point vortex is a δ-function singularity of 2D vorticity field.

In planar case a point vortex produces vorticity field

ω(x, y) = Γδ(x− x0)δ(y − y0), (1.1.6)

where Γ is called intensity(circulation) of point vortex and (x0, y0) is a position of point

vortex.

On smooth compact surfaces, in order for Kelvin circulation theorem to hold, vor-

ticity field corresponding to a point vortex should be

ω(q1, q2) =
Γ

H1H2

δ(q1 − q(0)
1 )δ(q2 − q(0)

2 )− Γ

C
, (1.1.7)

where the last term helps to preserve total vorticity and C is a circulation of uniform

vorticity field around infinitely small unit circle. For example, in spherical coordinates

(r, θ, φ) on a unit sphere a point vortex produces the vorticity field

ω(θ, φ) =
Γ

sin θ
δ(θ − θ0)δ(φ− φ0)− Γ

4π
, (1.1.8)

Linear superposition of point vortices will create following vorticity field

ωN(q1, q2) =
N∑
i=1

Γi
H1H2

δ(q1 − q(i)
1 )δ(q2 − q(i)

2 )− sΓ

C
, (1.1.9)

where Γ =
N∑
i=1

Γi and s = 0 in planar case, s = 1 on compact surface.
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Proposition 1.1.2. 3 Linear superposition of N independent point vortices is a weak

solution of 2D vorticity equations. Positions of point vortices change according to the

equations 
dq

(i)
1

dt
= −

∂ψN(q
(i)
1 , q

(i)
2 )

∂q1

,

dq
(i)
1

dt
=
∂ψN(q

(i)
1 , q

(i)
2 )

∂q2

,

(1.1.10)

where ψN = ωN ∗ ψ̂ and ψ̂ is a fundamental solution of Laplace-Beltrami operator, i.e.

it is the solution of the equation

−
1

H1H2

 ∂

∂q1

H2

H1

∂ψ̂

∂q1

+
∂

∂q2

H1

H2

∂ψ̂

∂q2


 =

1

H1H2

δ(q1 − q(i)
1 )δ(q2 − q(i)

2 )− s 1

C
.

(1.1.11)

Proof. To show that ωN is a weak solution of 2D vorticity equation, we will plug in ωN

and ψN into the second equation in (1.1.3), multiply it by a test function φ ∈ C2
c (D)

and integrate over D. After these manipulations we will get

∫
D

 N∑
i=1

Γi

H1H2

dq
(1)
1

dt
δ′(q1 − q(i)

1 )δ(q2 − q(i)
2 ) +

Γi

H1H2

dq
(1)
2

dt
δ(q1 − q(i)

1 )δ′(q2 − q(i)
2 )+

+
∂ψN

∂q2

 Γi

H1H2

δ′(q1 − q(i)
1 )δ(q2 − q(i)

2 ) + δ(q1 − q(i)
1 )δ(q2 − q(i)

2 )
∂

∂q1

Γi

H1H2

−
−
∂ψN

∂q1

 Γi

H1H2

δ(q1 − q(i)
1 )δ′(q2 − q(i)

2 ) + δ(q1 − q(i)
1 )δ(q2 − q(i)

2 )
∂

∂q2

Γi

H1H2


φdS =

= 0,

3Proof of this proposition for the planar case can be found in [MP94]. Different derivation of equations
of motion on compact surfaces can be found in [Zer02, Kim99, Bog77].
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For any A(q) and compactly supported φ(q) we have

∫
D

A(q)δ′(q − q0)φ(q)dq = −
∫
D

δ(q − q0)(A(q)φ(q))′dq =

= −
∫
D

δ(q − q0)(A′(q)φ(q) + A(q)φ′(q))dq =

= −A′(q0)φ(q0)− A(q0)φ′(q0) =

= −A′(q0)

∫
D

δ(q − q0)φ(q)dq − A(q0)

∫
D

δ(q − q0)φ′(q)dq =

= −A′(q0)

∫
D

δ(q − q0)φ(q)dq + A(q0)

∫
D

δ′(q − q0)φ(q)dq =

= −
∫
D

A′(q0)δ(q − q0)φ(q)dq +

∫
D

A(q0)δ′(q − q0)φ(q)dq,

and

∫
D

A(q)δ(q − q0)φ(q)dq = A(q0)φ(q0) =

∫
D

A(q0)δ(q − q0)φ(q)dq.

Using these observations and after some simplifications we get

∫
D

N∑
i=1

 Γi

H1H2

∣∣∣∣∣∣∣
(q

(i)
1 ,q

(i)
2 )

dq(1)
1

dt
+
∂ψN(q

(i)
1 , q

(i)
2 )

∂q2

 δ′(q1 − q(i)
1 )δ(q2 − q(i)

2 )+

+
Γi

H1H2

∣∣∣∣∣∣∣
(q

(i)
1 ,q

(i)
2 )

dq(1)
2

dt
−
∂ψN(q

(i)
1 , q

(i)
2 )

∂q1

 δ(q1 − q(i)
1 )δ′(q2 − q(i)

2 )

φdS = 0,

(1.1.12)

Since δ′(q1− q(i)
1 )δ(q2− q(i)

2 ), δ(q1− q(i)
1 )δ′(q2− q(i)

2 ), i = 1, ..., N are linearly indepen-

dent, from (1.1.12) we get that point vortices are week solutions of Euler equations.
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1.2 Equations of motion on a sphere

Since in this work we will be studying motion of point vortices on a sphere, let us derive

different forms of the equations of motion of point vortices on a unit sphere. The most

used coordinates on a sphere are the regular spherical coordinates. Let

q1 = θ, −π < θ ≤ π,

q2 = φ, 0 ≤ φ < 2π,

q3 = r = 1.

Then H1 = 1, H2 = sin θ and ψ̂ is

ψ̂(θ, φ) = −
1

4π
ln [1− cos(γi)] , (1.2.1)

where γi = γi(θ, φ) is the central angle between a point vortex (θi, φi) and a point (θ, φ)

and

cos γi = cos θ cos θi + sin θ sin θi cos(φ− φi).

Then the equations of motion (1.1.10) became

sin θiφ̇i =
1

4π

N∑
j=1,i 6=j

Γj
κij

1− cos γij
,

θ̇i = −
1

4π

N∑
j=1,i 6=j

Γj
sin θj sin(φi − φj)

1− cos γij
,

where γij = γj(φi, θi) and κij = sin θi cos θj − cos θi sin θj cos (φi − φj).
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If we embed the unit sphere into R3 (use cartesian coordinates and place the center

of the sphere into the origin) the equations (1.2.4) will transform to


ẋi =

N∑
j=1,j 6=i

Γj

2π

xj × xi

(xi − xj)2
,

||xi|| = 1, i = 1, . . . , N.

(1.2.2)

where xi = (xi, yi, zi) coordinates of a i-th point vortex.

As it is shown in [New01], equations (1.2.2) can be reduced to equations for

lij = ||xi − xj||, 1 ≤ i < j ≤ N . To get these equations, subtract corresponding

equations for ith and jth vortex and dot multiply the difference by (xi−xj). After some

simplifications we will get

(ẋi − ẋj) · (xi − xj) =

=
N∑

k=1,k 6=i,k 6=j

Γk
2π

[
xi · xj × xk
(xj − xk)2

− xi · xj × xk
(xi − xk)2

]
,

Since
dl2ij
dt

= 2(ẋi − ẋj) · (xi − xj), then

dl2ij
dt

=
N∑

k=1,k 6=i,k 6=j

ΓkVijk
π

(
1

l2jk
− 1

l2ik

)
, (1.2.3)

where Vijk = xi · xj × xk. These equations depend only on l2ij and describe relative

motion of point vortices on a sphere.

Another useful form of equations of motions can be obtained if we introduce cylin-

drical coordinates on a sphere. Let

q1 = z, −1 ≤ z ≤ 1,

q2 = φ, 0 ≤ φ < 2π,

9



q3 = r = 1.

Then H1 = 1, H2 =
√

1− z2 and equations of motion will be

sin θiφ̇i =
1

4π

N∑
j=1,i 6=j

Γj
mij

1− kij
,

θ̇i = −
1

4π

N∑
j=1,i 6=j

Γj

√
1− z2

j sin(φi − φj)

1− kij
,

where kij = zizj +
√

1− z2
i

√
1− z2

j cos(φi − φj) and mij =√
1− z2

i zj − zi
√

1− z2
j cos (φi − φj).

1.3 Hamiltonian structure and integrals of motion

As it is shown in [Bog77, Zer02, Kim99, New01] equations of point vortex motion on

a sphere can be written in a Hamiltonian form. Canonical variables and Hamiltonian

function for the system are

H =
1

4π

∑
i<j

ΓiΓj ln lij,

pi =
√
|Γi| cos θi, qi = sign(Γi)

√
|Γi|φi,

ṗi =
∂H

∂qi
, q̇i = −∂H

∂pi
. (1.3.1)
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Since the Hamiltonian is invariant under the action of SO(3), by Noether’s theorem

we will have 3 (dim SO(3) = 3) conserved quantities

c1 =
N∑
i=1

Γixi =
N∑
i=1

Γi sin θi cosφi =
N∑
i=1

Γi
√

1− z2
i cosφi,

c2 =
N∑
i=1

Γixi =
N∑
i=1

Γi sin θi sinφi =
N∑
i=1

Γi
√

1− z2
i sinφi,

c3 =
N∑
i=1

Γixi =
N∑
i=1

Γi cos θi =
N∑
i=1

Γizi.

(1.3.2)

Vector c = (c1, c2, c2) is called center of vorticity and M = c/(
∑N

i=1)Γi is a moment of

vorticity. To prove that the components of vector c are integrals of motion, one should

consider ċ =
N∑
i=1

Γiẋi and use (1.2.2) along with skew-symmetry of vector product to

show that ċ = 0.

1.4 Geometric description

Dynamical system of N point vortices on a sphere admits nice geometric description.

Since point vortices can not collide the phase space of the system can be written as

P = {s = (s1, . . . , sN) ∈ S2 × . . .× S2|si 6= sj, i 6= j, 1 ≤ i, j ≤ N}. (1.4.1)

The symplectic structure on the phase space is given by

ω̃ =
N∑
i=0

1

Γi
π∗i ωS2 (1.4.2)

where Γi are intensities of point vortices, πi - projection onto the i-th copy of S2 and

ωS2 is the area form on S2.
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Corresponding Poisson bracket for f, g ∈ C(P ) can be written as

{f, g} = ω̃(Xf ,Xg). (1.4.3)

As it was shown in previous section, the system is a Hamiltonian system with Hamil-

tonian H = −
N∑
i=1

ΓiΓj ln lij , where lij is an euclidean distance between vortices i and j.

After embedding S2 into R3 we can rewrite the phase space, form ω̃ and Poisson

bracket as

P = {x = (x1, . . . ,xN) ∈ (R3)N | ||xi|| = 1, ||xj|| = 1,xi 6= xj, i 6= j, 1 ≤ i, j ≤ N},

ω̃ = −
N∑
i=1

1

Γi
(xidyi ∧ dzi + yidzi ∧ dxi + zidxi ∧ dyi) , (1.4.4)

{f, g} = −
N∑
i=1

1

Γi
xi · (∇if ×∇ig) , (1.4.5)

where ∇i is a gradient on i-th copy of R3. Notice, that since we have one redundant

variable, form ω̃ is degenerate and thus it is not symplectic any more. But if we introduce

chart containing only 2 spacial coordinates, the form will became symplectic.

If we introduce spherical coordinates on each copy of S2 then all of the above can

be rewritten as

P = {s = (s1, . . . , sN) ∈ (S2)N |si = (θi, φi), si 6= sj, i 6= j, 1 ≤ i, j ≤ N},

ω̃ =
N∑
i=1

1

Γi
sin θidφi ∧ dθi,

{f, g} =
N∑
k=1

1

Γk

(
∂f

∂ cos θk

∂g

∂φk
− ∂f

∂φk

∂g

∂ cos θk

)
,

{φi, cos θj} =
δij
Γi
. (1.4.6)
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And for cylindrical coordinates on each copy of S2 we will get

P = {u = (u1, . . . , uN) ∈ (S2)N |ui = (zi, φi), ui 6= uj, i 6= j, 1 ≤ i, j ≤ N},

ω̃ =
N∑
i=1

1

Γi
dzi ∧ dφi,

{f, g} =
N∑
k=1

1

Γk

(
∂f

∂zk

∂g

∂φk
− ∂f

∂φk

∂g

∂zk

)
,

{φi, zj} =
δij
Γi
. (1.4.7)

Since the diagonal action SO(3) on P is canonical, the momentum map4 will have 3

components which are proportional to the coordinates of the center of vorticity.

Proposition 1.4.1. Momentum map for the system of N point vortices on a sphere

embedded in R3N is

J(x) = −c = −
N∑
i=1

Γixi. (1.4.8)

Proof. By the definition J : P → TP ∗ is a momentum map if for any F ∈ F(P ),

x ∈ R3N , ξ = (ξ, ξ, . . . , ξ) ∈ (so(3))N = TP we have

{F,< J(x), ξ >} = ξP [F ], (1.4.9)

where ξP [F ] is a Lie derivative of F and

< J(x), ξ >=
N∑
l=1

< Jl(x), ξ >d=
N∑
l=1

Jl(x) · ξ, (1.4.10)

4For details about momentum mappings see the section 3 and [AM78].
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where Jl = πl(J) - projection of J onto l-th copy of R3, < ·, · >d - duality relation

beween so(3) and so(3)∗ (in case if these spaces are embedded into R3, the relation is a

dot product).

From the properties of dot product we have

{F,< J(x), ξ >} = −
N∑
i=1

1

Γi
xi · (∇iF ×∇i < J(x), ξ >) =

= −
N∑
i=1

1

Γi
∇iF · (∇i < J(x), ξ > ×xi) =

=
N∑
i=1

∇iF · (∇i(
N∑
l=1

−Jl(x)

Γi
· ξ)× xi) =

=
N∑
i=1

∇iF · (ξ × xi) = ξP [F ],

Since the relations hold for any F , xi and ξ, thus

∇i(
N∑
l=1

−Jl(x)

Γi
· ξ) = ξ, i = 1, .., N. (1.4.11)

In cartesian coordinates

−(Jl(x))′3i+1

Γi
ξx = ξx,

−(Jl(x))′3i+2

Γi
ξy = ξy,

−(Jl(x))′3i+3

Γi
ξz = ξz,

i = 1, .., N.

Thus

−(Jl(x))′3l+1

Γl
=
−(Jl(x))′3l+2

Γl
=
−(Jl(x))′3l+3

Γl
= 1,⇒
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Jl(x) = −Γlxl,

which proves the proposition.

Now, since for any F ∈ F(P ), x ∈ R3N and ξ ∈ TP ∗

{F,< Ad∗g−1J(x), ξ >} = {F,< J(g(x)), ξ >}

where Ad∗g : TP ∗ → TP ∗ is a lifted coadjoint action5 of g ∈ SO(3) on TP ∗ (in our

case it is a rotation of vector J by g). Thus

Ad∗g−1J(x) = J(g(x)).

So J is equivariant under the adjoint action of g ∈ SO(3) on TP ∗. From the equivariance

or from

||J||2 =

(
N∑
i=1

Γi

)2

−
∑
i<j

ΓiΓjl
2
ij, (1.4.12)

we have that ||J||2 is invariant under coadjoint action of SO(3) and thus any smooth

function of ||J||2 is also invariant. Since the components of J are constant of motion,

any smooth function of the components and ||J||2 will be a Casimir function. And also,

since the group SO(3) is compact and its action is proper on both P and TP ∗, level sets

of ||J||2 = const 6= 0 will define symplectic leaves of P .

1.5 Symplectic reduction

The system has a rotational symmetry and since the action of compact symmetry group

SO(3) on P is proper, P admits reduction W = P/SO(3) with W being symplectic

5See [AM78] for the general construction of conjoint lifts.
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manifold6. In order to study the reduced space, let us introduce special coordinates on

the unreduced space. It is clear that if c 6= 0 the phase space P is isomorphic to

P = {c,Γ1x1 − Γ2x2, . . . ,ΓN−1xN−1 − ΓNxN} = SO(3)× U, (1.5.1)

where

U = {θ1} × (S2)N−2. (1.5.2)

and θ1 is an angle between vector c and x1. The reduced space U has the dimension

1 + dim(S2) ∗ (N − 2) = 1 + 2N − 4 = 2N − 3 = dim(P )− dim(SO(3)).

In order to obtain a chart for the reduced space U we use the cartesian coordinates

xi, i = 1, . . . , N . It is customary to derive the equations of motion in terms of

y0 = c, (1.5.3)

y1 = Γ1x1 − Γ2x2, (1.5.4)

. . . ,

yN−1 = ΓN−1xN−1 − ΓNxN . (1.5.5)

6See [AM78] for details about symplectic reduction.
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The transformation matrix of this change of variables is

Mx→y =



Γ1 Γ2 Γ3 . . . ΓN−1 ΓN

Γ1 −Γ2 0 . . . 0 0

0 Γ2 −Γ3 . . . 0 0

...
...

... . . . ...
...

0 0 0 . . . ΓN−1 −ΓN


, (1.5.6)

and its inverse is

My→x =
1

N



1
Γ1

N−1
Γ1

N−2
Γ1

. . . 2
Γ1

1
Γ1

1
Γ1

−1
Γ2

N−2
Γ2

. . . 2
Γ2

1
Γ2

1
Γ3

−1
Γ3

−2
Γ3

. . . 2
Γ3

1
Γ3

...
...

... . . . ...
...

1
ΓN

−1
ΓN

−2
ΓN

. . . −N−2
ΓN

−N−1
ΓN


. (1.5.7)

Thus, from (1.2.2), the equations of point vortex motion on a sphere are


ẏ0 = ċ = 0,

ẏi = Γi+Γi+1

2π
xi×xi+1

y2
i

+
N∑

j=1,j 6=i,i+1

Γj
2π

(
xj×xi

(xj−xi)2 − xj×xi+1

(xj−xi+1)2

)
,

2 cos−1(yi · ez) = cos−1((yi − ez) · ez),

(1.5.8)

where ez = (0, 0, 1) and

xi =
1

ΓjN

(
c−

i−1∑
k=1

kyk +
N−1∑
k=i

(N − k)yk

)
, i = 1, . . . , N. (1.5.9)
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Now we are ready to perform the reduction. Clearly, the first equation in (1.5.8) can be

reduced. This will reduce the coordinate space by 2. Additionally, one of the equations

for yi can be reduced and replaced by the equation for θk

|c|d cos θk
dt

=
d

dt
(c · xk) = ċ · xk + c · ẋk =

= xk ·
N∑

i,j=1,j 6=i

ΓiΓj
2π

xj × xi
(xj − xi)2

+ (
N∑
i=1

Γixi) ·
N∑

j=1,j 6=k

Γj
2π

xj × xk
(xj − xk)2

=

=
N∑

i,j=1,j 6=i 6=k

ΓiΓj
2π

(
xk · xj × xi
(xj − xi)2

− xk · xj × xi
(xj − xk)2

)
=

=
N∑

i,j=1,j 6=i 6=k

ΓiΓjVkji
2π

(
1

l2ji
− 1

l2jk

)
. (1.5.10)

Assume we have chosen equation for θ1 and reduced equation for yN−1. Then recon-

struction equations are

x1 = Rn(θ1)ĉ,

x2 =
1

Γ2

(Γ1x1 − y1) =
Γ1

Γ2

Rn(θ1)ĉ− y1

Γ2

,

x3 =
1

Γ3

(Γ2x2 − y2) =
Γ1

Γ3

Rn(θ1)ĉ− y1

Γ3

− y2

Γ3

,

. . .

xN−1 =
1

ΓN−1

(ΓN−2xN−2 − yN−2) =
Γ1

ΓN−1

Rn(θ1)ĉ−
N−2∑
i=1

yi
ΓN−2

,

xN =
1

ΓN

(
c−

N−1∑
i=1

Γixi

)
=

c

ΓN
− (N − 1)

Γ1

ΓN
Rn(θ1)ĉ +

N−2∑
i=1

(N − 2− i) yi
ΓN

,

where ĉ = c
|c| and Rn(θ) is a rotation matrix on angle θ about axis with direction n. The

direction n should be orthogonal to c. In the reconstruction formulas we have 3 degrees

of freedom (the reduced degrees). These degrees of freedom characterize orientation
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of the vector c and orientation of vector n. These parameters can be taken from the

unreduced configuration (if we start with it) or chosen arbitrarily.
From (1.3.1) the reduced Hamiltonian can be written as

h(θ1,y1, . . . ,yN−2) = H(x1(θ1,y1, . . . ,yN−2), . . . ,xN (θ1,y1, . . . ,yN−2)) =

=
N∑

i,j=1,j 6=i

ΓiΓj

4π
ln |xi − xj | =

=

N−1∑
i,j=1,j 6=i

ΓiΓj

4π
ln

∣∣∣∣∣∣
(

Γ1

Γi
−

Γ1

Γj

)
Rn(θ1)ĉ−

i−1∑
k=1

yk

Γi
+

j−1∑
k=1

yk

Γj

∣∣∣∣∣∣+

+

N−1∑
i=1

ΓiΓN

4π
ln

∣∣∣∣∣ c

ΓN
− (N − 1)

Γ1

ΓN
Rn(θ1)ĉ +

N−2∑
k=1

(N − 2− k)
yk

ΓN
−

Γ1

Γi
Rn(θ1)ĉ +

i−1∑
k=1

yk

Γi

∣∣∣∣∣ ,

where the projection (1.5.11) is used for xi, i = 1, . . . , N .
In order to obtain the reduced Poisson bracket, we use the same projection and rela-

tions

∇1 =
∂

∂x1
=
∂θ1

∂x1

∂

∂θ1
+

N−2∑
j=1

∂yj

∂x1

∂

∂yj
=
∂(ĉ · x1)

∂x1

∂

sin θ1∂θ1
+ Γ1

∂

∂y1
=

=

(
ĉ · (1, 1, 1) +

1

|c|
(Γ1,Γ1,Γ1) · x1 +

(Γ1,Γ1,Γ1) · c
|c|2

ĉ · x1

)
∂

sin θ1∂θ1
+ Γ1

∂

∂y1
=

=

(
ĉ · (1, 1, 1) +

1

|c|
(Γ1,Γ1,Γ1) ·Rn(θ1)ĉ +

(Γ1,Γ1,Γ1) · c
|c|2

cos θ1

)
∂

sin θ1∂θ1
+ Γ1

∂

∂y1
,

∇i =

(
1

|c|
(Γi,Γi,Γi) · xi +

(Γi,Γi,Γi) · c
|c|2

ĉ · xi
)

∂

sin θ1∂θ1
− Γi

∂

∂yi−1
+ Γi

∂

∂yi
=

=

(
1

|c|
(Γi,Γi,Γi) +

(Γi,Γi,Γi) · c
|c|2

ĉ

)
·
(

Γ1

Γi
Rn(θ1)ĉ−

i−1∑
k=1

yk

Γi

)
∂

sin θ1∂θ1
− Γi

∂

∂yi−1
+ Γi

∂

∂yi
,

i = 2, . . . , N − 2,

∇N−1 =

(
1

|c|
(ΓN−1,ΓN−1,ΓN−1) · xN−1 +

(ΓN−1,ΓN−1,ΓN−1) · c
|c|2

ĉ · xN−1

)
∂

sin θ1∂θ1
−

−ΓN−1
∂

∂yN−2
=

=

(
1

|c|
(ΓN−1,ΓN−1,ΓN−1) +

(ΓN−1,ΓN−1,ΓN−1) · c
|c|2

ĉ

)
·
(

Γ1

ΓN−1
Rn(θ1)ĉ +

N−2∑
k=1

yk

ΓN−1

)
∂

sin θ1∂θ1
−

−ΓN−1
∂

∂yN−2
,

∇N =

(
1

|c|
(ΓN ,ΓN ,ΓN ) · xN +

(ΓN ,ΓN ,ΓN ) · c
|c|2

ĉ · xN
)

∂

sin θ1∂θ1
=

=

(
1

|c|
(ΓN ,ΓN ,ΓN ) +

(ΓN ,ΓN ,ΓN ) · c
|c|2

ĉ

)
·
(

c

ΓN
− (N − 1)

Γ1

ΓN
Rn(θ1)ĉ +

N−2∑
k=1

(N − 2− k)
yk

ΓN

)
∂

sin θ1∂θ1
.
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Then from (1.4.5) we have

{f, g} = −Rn(θ1)ĉ ·

·
[(

ĉ · (1, 1, 1) +
1

|c|
(Γ1,Γ1,Γ1) ·Rn(θ1)ĉ +

(Γ1,Γ1,Γ1) · c
|c|2

cos θ1

)
∂f

sin θ1∂θ1
+ Γ1

∂f

∂y1

]
×

×
[(

ĉ · (1, 1, 1) +
1

|c|
(Γ1,Γ1,Γ1) ·Rn(θ1)ĉ +

(Γ1,Γ1,Γ1) · c
|c|2

cos θ1

)
∂g

sin θ1∂θ1
+ Γ1

∂g

∂y1

]
−

−
(
N−1∑
i=2

Γ1

Γi
Rn(θ1)ĉ−

i−1∑
k=1

yk

Γi

)
·

·
[(

1

|c|
(Γi,Γi,Γi) +

(Γi,Γi,Γi) · c
|c|2

ĉ

)
·
(

Γ1

Γi
Rn(θ1)ĉ−

i−1∑
k=1

yk

Γi

)
∂f

sin θ1∂θ1
− Γi

∂f

∂yi−1
+ Γi

∂f

∂yi

]
×

[(
1

|c|
(Γi,Γi,Γi) +

(Γi,Γi,Γi) · c
|c|2

ĉ

)
·
(

Γ1

Γi
Rn(θ1)ĉ−

i−1∑
k=1

yk

Γi

)
∂g

sin θ1∂θ1
− Γi

∂g

∂yi−1
+ Γi

∂g

∂yi

]
−

−
(

c

ΓN
− (N − 1)

Γ1

ΓN
Rn(θ1)ĉ +

N−2∑
i=1

(N − 2− i)
yi

ΓN

)
·

·
[(

1

|c|
(ΓN ,ΓN ,ΓN ) +

(ΓN ,ΓN ,ΓN ) · c
|c|2

ĉ

)
·
(

c

ΓN
− (N − 1)

Γ1

ΓN
Rn(θ1)ĉ +

N−2∑
k=1

(N − 2− k)
yk

ΓN

)
∂f

sin θ1∂θ1

]
×

×
[(

1

|c|
(ΓN ,ΓN ,ΓN ) +

(ΓN ,ΓN ,ΓN ) · c
|c|2

ĉ

)
·
(

c

ΓN
− (N − 1)

Γ1

ΓN
Rn(θ1)ĉ +

N−2∑
k=1

(N − 2− k)
yk

ΓN

)
∂g

sin θ1∂θ1

]
.
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Chapter 2

Relative equilibria

We start the chapter with the definition of the relative equilibria we study and the method

of finding them. Then we give small primer on singular value decomposition and Shan-

non entropy, which we use to verify and classify the equilibria. In the last sections we

find symmetric and asymmetric relative equilibrium configuration of point vortices.

2.1 Configuration matrix

Definition 2.1.1. We say that configuration of N point vortices on a sphere is a rela-

tive equilibrium if the evolution of the system can be represented as rotations of initial

configuration.

In other words, system is not changing modulo natural action of group SO(3) , i.e.

trajectories of the point vortices are orbits of the group. The equivalent condition is to

require the distances between the vortices to be constant in time.

From the definition, we see that relative equilibria are fixed points of the equations

of motion (1.2.3), i.e.

N∑
k=1,k 6=i,k 6=j

ΓkVijk
π

(
1

l2jk
− 1

l2ik

)
= 0, (2.1.1)
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This can be rewritten as

0 0 C123 C124 . . . C12N

0 C132 0 C134 . . . C13N

0 C142 C143 0 . . . C14N

...
...

...
... . . . ...

C(N−1)N1 C(N−1)N2 C(N−1)N3 C(N−1)N4 . . . 0





Γ1

Γ2

Γ3

. . .

ΓN


= 0.

(2.1.2)

or

AΓ = 0, (2.1.3)

where matrix A is N × N(N−1)
2

matrix with components Amk = Cijk =
Vijk
π

(
1
l2jk
− 1

l2ik

)
and m is an index number which corresponds to permutation (i, j). Vector Γ =

(Γ1, . . . ,ΓN) is a vector of intensities.

Definition 2.1.2. Matrix A is called a configuration matrix of the system of point vor-

tices1.

From (2.1.2) we see, that the question about existence of relative equilibrium for

given geometric configuration can be reformulated as linear algebra question: for a

given matrix A find whether it has nontrivial null space.

Since A has nontrivial null space if and only if AAT has nontrivial null space, the

necessary and sufficient condition for matrix A to have nontrivial equilibria is

det(AAT ) = 0. (2.1.4)

1This definition and the approach we use to characterize relative equilibria of point vortices was intro-
duced by P. Newton in [New01] and was used in [JN06, MON10] to classify symmetric relative equilib-
rium configurations.
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As it is shown in section 1.5, the dimension of the reduced space is (2N − 3). Thus

it is enough to consider only 2N − 3 independent variables. Since the distances lij

are unsigned (they appear in squared form), it is easy to see that for the configurations

where we have all of the point vortices in one hemisphere, we can not to distinguish this

configuration from its mirror symmetry. This produces a singularity in any chart of the

reduced space defined in terms of lij . Thus we can not use just lij as a coordinates

on the reduced space. But we can use them as coordinates which describe relative

equilibrium configuration, since we can use the same singularity to construct all of the

relative equilibria described by distances.

In order to count independent distances needed to describe the relative equilibrium

we use the following geometric observations: without loss of generality we can assume

that one of the point vortices of relative equilibrium configuration is located at the north

pole. Additionally, we can choose the next point vortex to be on 0-th longitude. Then

in order to describe two point vortex relative equilibrium it is enough to provide one

distance l12. Then without loss of generality, we can assume the third votes will lie in

the hemisphere from 0th to 180th longitude and we need exactly 2 distances l13 and l23

to describe the relative equilibrium configuration. For the fourth vortex we need all 3

distances l14, l24 and l34 in order to describe the configuration. Every other point vortex

need also at least 3 distances to describe its position. Thus, we will need 3N−3−2−1 =

3N − 6 = 3(N − 2) independent distances. We denote them di, i = 1, . . . , 3N − 6.

As it is shown in Appendix A formula (A.0.6) gives relation between the distances.

Since volumes are nonnegative, the expressions under the roots are nonnegative as well.

Using simple algebraic technique we can get rid of the roots and at the end will obtain

algebraic equations of order 2number of roots = 25 = 32. These equations will repre-

sent algebraic restrictions for the distances. From the geometric observations, we know

that these equations can be solved for di.
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Appendix A also provides formula (A.0.2), which is a representation of Vijk in terms

of lij , lik, and ljk and thus in terms of di. The condition (2.1.4) along with relations on

the distances (A.0.6) represents an algebraic variety in the space of coordinates di.

Let

P (d1, . . . , d3N−6) = det(AAT ). (2.1.5)

Then P is a continuous function, as a superposition of polynomial and a root function.

Since AAT is a positive definite matrix, the only zeros of function P are those were it

touches the abscise axis.

2.2 SVD and Shannon entropy

In order to find the dimension of the null space we will use method of singular value

decomposition. Additionally, using notion of Shannon entropy we characterize found

relative equilibria.

The most comprehensive decomposition of real or complex valued N ×M matrix

A is the singular value decomposition2. The N singular values, σ(i) (i = 1, . . . N ), of

A, are non-negative real numbers that satisfy

Av(i) = σ(i)u(i); A†u(i) = σ(i)v(i), (2.2.1)

The vector u(i) is called the left-singular vector associated with σ(i), while v(i) is the

right-singular vector. In terms of these, the matrix A has the factorization

A = UΣV† =
k∑
i=1

σ(i)u(i)v(i)T , (k ≤ N) (2.2.2)

2See [GVL96] for general theory on singular-value decomposition.
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where U and V are orthogonal (or unitary in the case if A is complex valued) and

Σ ∈ RN×N is upper diagona. Here, the rank of A is k. The columns of U are the

left-singular vectors u(i), while the columns of V are the right-singular vectors v(i). The

matrix Σ is given by:

Σ =



σ(1) · · · 0

. . .

0 · · · σ(N)

... . . .
...

0 . . . 0


∈ RN×M . (2.2.3)

The singular values can be ordered so that σ(1) ≥ σ(2) ≥ . . . ≥ σ(N) ≥ 0 and one or

more may be zero. As is evident from multiplying the first equation in (2.2.1) by A† and

the second by A,

(A†A− σ(i)2)v(i) = 0; (AA† − σ(i)2)u(i) = 0, (2.2.4)

the singular values squared are the eigenvalues of the covariance matrices A†A or AA†,

which have the same eigenvalue structure, while the left-singular vectors u(i) are the

eigenvectors of AA†, and the right-singular vectors v(i) are the eigenvectors of A†A.

Since the set of singular values of matrix A characterizes matrix modulo orthogo-

nal/unitary matrix multiplication it is customary to use the singular spectrum to charac-

terize equilibrium configurations.
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Figure 2.1: Minimum (a) and maximum (b) entropy configuration for N = 7.

First we normalize each of the singular values so that they are positive and sum to

one:

σ̂(i) ≡ σ(i)/
k∑
j=1

σ(j). (2.2.5)

Then

k∑
i=1

σ̂(i) = 1, (2.2.6)

and the string of k numbers arranged from largest to smallest: (σ̂(1), σ̂(2), ..., σ̂(k)) is the

‘spectral representation’ of the equilibrium. The rate at which they decay from largest

to smallest is encoded in a scalar quantity called the Shannon entropy, S, of the matrix3:

S = −
∑
i

σ̂(i) ln σ̂(i). (2.2.7)

3See [SW48] and more recent discussions associated with vortex lattices in [CKN09].
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With this representation, spectra that drop off rapidly from highest to lowest, are ‘low-

entropy equilibria’, whereas those that drop off slowly (even distribution of normalized

singular values) are ‘high-entropy equilibria’. Note that from the representation (2.2.2),

low-entropy equilibria have configuration matrix representations that are dominated in

size by a small number of terms, whereas the configuration matrices of high-entropy

equilibria equilibria have terms that are more equal in size. See [CKN09] for more

detailed discussions in the context of relative equilibrium configurations, and the origi-

nal report of [SW48] which has illuminating discussions of entropy, information content,

and its interpretations with respect to randomness.

As an example of the normalized spectral distribution associated with the N = 7

singularities we show in Figure 2.1 the 7 singular values (including the zero one). The

smallest value of the entropy is attained when all except one singular values are zeros.

The non-zero singular value due to normalization should be 1. Then from (2.2.7) S =

1 ln 1 = 0. The highest value of the entropy is attained when all of the singular values

are non-zeros and equal, i.e. if the singular values are in the highest order. From (2.2.7)

S = −N ln 1
N

= lnN .

Another useful application of SVD to point vortex problems is a method of Brownian

ratchets. The method is used to find the asymmetric relative equilibrium configurations.

The idea behind the method is minimization of the smallest singular value using random

perturbation of positions of point vortices. The method was developed in [NC07] and

later used in [NS09].

2.3 Symmetric relative equilibria

Symmetric configurations of point vortices on a sphere can easily be obtained from regu-

lar polyhedra. As it is shown in [Cox73], there are only five convex regular polyhedra in
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Tetrahedron Octahedron

Cube Icosahedron Dodecahedron

Figure 2.2: Platonic solids

3D: tetrahedron, octahedron, cube, icosahedron and dodecahedron. The family is called

Platonic solids. One of the characteristic properties of the Platonic solids is transitivity

of the faces, i.e. all of the faces of particular polyhedron can be described by a single

regular polygon. Relaxation of this property, i.e. allowance for the faces to be different

regular polygons, gives us Archimedean solids. Both, Platonic and Archimedean solids,

are discrete subgroups of SO(3) and thus can be circumscribed into a sphere. By putting

point vortices in the vertices of the polyhedra we can get the symmetric configurations of

the point vortices on a sphere. Schematic wireframes of the Platonic and Archimedean

solids are given on Figure 2.2 and Figure 2.3.

The general algebraic approach to the description of symmetric relative equilibria

was first used in [LMR01]. There the authors considered discrete subgroups of SO(3)

and proved existence of many symmetric relative equilibria of point vortices with equal

strengths. Another approach was used by Jamaloodeen and Newton in [JN06]. They

28



Cuboctahedron Great rhombicosidodecahedron Great rhombicuboctahedron

Icosidodecahedron Small rhombicosidodecahedron Small rhombicuboctahedron

Snub cube Snub dodecahedron Truncated cube

Truncated dodecahedron Truncated icosahedron Truncated octahedron

Truncated tetrahedron

Figure 2.3: Archimedean solids

29



used configuration matrix approach and proved that all of the Platonic solids are relative

equilibria. Additionally they found the basis sets of the null spaces of the configuration

matrices. Further extension of this work was done in [MON10], where the authors

proved that among the Archimedean solids only cuboctahedron and icosidodecahedron

are relative equilibrium configurations of point vortices on a sphere. In order to use in

the stability study we will reproduce the results on Platonic and Archimedean solids with

a small new result in terms of convenient and symmetric basis sets of the configuration

matrices.

We use the following method to find the relative equilibrium configurations:

• For each of the symmetric configuration we compute the configuration matrix.

• Using SVD decomposition we find the singular values. If at least on of them is 0,

then the configuration is a relative equilibrium.

• From SVD decomposition we find the dimension and the basis set of the null

space of the configuration matrix. The basis vectors represent the intensities of

point vortices which make the configuration a relative equilibrium.

• After normalization of singular values we compute the Shannon entropy, which is

a useful characteristic of the configuration.

Tetrahedron.

Without loss of generality we can choose coordinates of point vortices in tetrahedral

configuration to be

x1 =
1√
3

(1, 1, 1), x2 =
1√
3

(1,−1,−1), (2.3.1)

x3 =
1√
3

(−1, 1,−1), x4 =
1√
3

(−1,−1, 1). (2.3.2)
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And since lij = llk for any i, j, l, k, we have that A = 0. Thus det(AAT ) = 0 and

tetrahedron is a relative equilibrium configuration for any choice of Γi.

Octahedron.

For octahedron we can choose coordinates of the vortices to be

x1 = (1, 0, 0), x2 = (−1, 0, 0),

x3 = (0, 1, 0), x4 = (0,−1, 0),

x5 = (0, 0, 1), x6 = (0, 0,−1).

Then A = 0, as well, since either lij = llk or Vijk = 0. Thus, as above, for any Γi the

configuration is a relative equilibrium.

Cube.

For a cubic configuration with vertices in

x1 = (0, 0, 1), x2 = (0, 0,−1), (2.3.3)

xi+3 =

(
2
√

2

3
cos

2πi

3
,
2
√

2

3
sin

2π

3
,
1

3

)
, i = 0, .., 2,

xi+6 =

(
2
√

2

3
cos

π + 2πi

3
,
2
√

2

3
sin

π + 2π

3
,−1

3

)
, i = 0, .., 2,

Null-space of the configuration matrix is 5-dimensional. Basis for the null-space can

be chosen as (see Figure 2.4)

b1 = (1, 1, 1, 1, 1, 1, 1, 1),

b2 = (1,−1, 0, 0, 0, 0, 0, 0),

b3 = (0, 0, 1, 0, 0, 0,−1, 0),

b4 = (0, 0, 0, 1, 0, 0, 0,−1),
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Figure 2.4: Null space of the configuration matrix for the cube

b5 = (0, 0, 0, 0, 1,−1, 0, 0).

Three non-zero singular values for the cube are equal to 4.

Icosahedron.

For the icosahedron with coordinates

x1 = (0, 0, 1), x2 = (0, 0,−1), (2.3.4)

xi+3 =

(
2√
5

cos
2πi

5
,

2√
5

sin
2π

5
,

1√
5

)
, i = 0, .., 4,

xi+8 =

(
2√
5

cos
π + 2πi

5
,

2√
5

sin
π + 2π

5
,− 1√

5

)
, i = 0, .., 4,
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configuration matrix A has seven dimensional null-space and basis for the null-space

can be chosen as (see Figure 2.5)

b1 = (1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1),

b2 = (1,−1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0),

b3 = (0, 0, 1, 0, 0, 0, 0, 0, 0,−1, 0, 0),

b4 = (0, 0, 0, 1, 0, 0, 0, 0, 0, 0,−1, 0),

b5 = (0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0,−1),

b6 = (0, 0, 0, 0, 0, 1, 0,−1, 0, 0, 0, 0),

b7 = (0, 0, 0, 0, 0, 0, 1, 0,−1, 0, 0, 0).

Icosahedral configuration matrix has five singular values which are equal to

σico =

√
12(5 +

√
5).

Dodecahedron.

For the dodecahedral configuration with point vortices at

xk = (cos
2kπ

5
su, sin

2kπ

5
su, zu), k = 1, . . . , 5, (2.3.5)

xk = (cos
2kπ

5
sl, sin

2kπ

5
sl, zl), k = 6, . . . , 10, (2.3.6)

xk = (cos
(2k + 1)π

5
sl, sin

(2k + 1)π

5
sl,−zl), k = 11, . . . , 15, (2.3.7)

xk = (cos
(2k + 1)π

5
su, sin

(2k + 1)π

5
su,−zu), k = 16, . . . , 20, (2.3.8)

(2.3.9)
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Figure 2.5: Null space of the configuration matrix for the icosahedron

where zu =
√

1
15

(
5 + 2

√
5
)
, zl =

√
1
15

(
5− 2

√
5
)
, su =

√
2
15

(
5−
√

5
)

and sl =√
2
15

(
5 +
√

5
)
. The configuration matrix has 16 nonzero singular values, and 4 zeros

(see Table 2.1). Thus the dimension of the null space is 4. The basis of the null space

can be chosen to be symmetric with

b1 = (1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1),

b2 = (1 + φ, 1 + φ, 1 + φ, 1 + φ, 1 + φ, φ, φ, φ, φ, φ, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0),

b3 = (1 + φ, φ, 1, φ, 1 + φ, 1 + φ, 1, 0, 1, 1 + φ, φ, 0, 0, φ, 1 + φ, 1, 0, 0, 1, φ),

b4 = (1 + φ, 1 + φ, φ, 1, φ, 1 + φ, 1 + φ, 1, 0, 1, 1 + φ, φ, 0, 0, φ, φ, 1, 0, 0, 1),
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Figure 2.6: Null space of the configuration matrix for the dodecahedron

where φ = 1+
√

5
2

(golden ratio). Figure 2.6 gives a geometric description of the basis.

Cuboctahedron.

For cuboctahedron with point vortices at

xi+j =
1√
2

((−1)i, (−1)j, 0), i = 1, 3, j = 0, 1, (2.3.10)

xi+j =
1√
2

((−1)i, 0, (−1)j), i = 5, 7, j = 0, 1, (2.3.11)

xi+j =
1√
2

((−1)i, (−1)j, 0), i = 9, 11, j = 0, 1, (2.3.12)

singular value decomposition of the configuration matrix has only one zero and 11

nonzero singular values. The null space contains only one vector

b1 = (1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1).
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Configuration σ (unormalized) σ (normalized) Shannon entropy
0.0000, 0.0000, undefined

Tetrahedron 0.0000, 0.0000 undefined undefined
0.0000, 0.0000, undefined

Octahedron 0.0000, 0.0000, undefined undefined
0.0000, 0.0000 undefined
4.0000, 4.0000, 0.3333, 0.3333,

Cube 4.0000, 0.0000, 0.3333, 0.0000, ln 3=1.0986
0.0000, 0.0000, 0.0000, 0.0000
0.0000, 0.0000 0.0000, 0.0000
9.3184, 9.3184, 0.2000, 0.2000,

Icosahedron 9.3184, 9.3184, 0.2000, 0.2000, ln 5 = 1.6094
9.3184, 0.0000, 0.2000, 0.0000,
0.0000, 0.0000, 0.0000, 0.0000,
0.0000, 0.0000, 0.0000, 0.0000,
0.0000, 0.0000 0.0000, 0.0000
1.3270, 1.3270, 0.1728, 0.1728,

Dodecahedron 1.3270, 1.3270, 0.1728, 0.1728, 2.0241
1.3270, 0.5324, 0.1728, 0.0278,
0.5324, 0.5324, 0.0278, 0.0278,
0.5324, 0.3550, 0.0278, 0.0124,
0.3550, 0.0000, 0.0124, 0.0000,
0.0000, 0.0000, 0.0000, 0.0000,
0.0000, 0.0000, 0.0000, 0.0000,
0.0000, 0.0000, 0.0000, 0.0000,
0.0000, 0.0000 0.0000, 0.0000

Table 2.1: Singular spectra of Platonic solids relative equilibrium configurations

The distribution of singular values is given in Table 2.2.

Icosidodecahedron.

The icosidodecahedron has 30 vertices, which can be chosen to be

xi = (±1, 0, 0), i = 1, 2,

xi = (0,±1, 0), i = 3, 4,

xi = (0, 0,±1), i = 5, 6,
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xi =
1√

2φ2 + 2φ+ 2
(±1,±φ,±(1 + φ)), i = 7, . . . , 14,

xi =
1√

2φ2 + 2φ+ 2
(±φ,±(1 + φ),±1), i = 15, . . . , 22,

xi =
1√

2φ2 + 2φ+ 2
(±(1 + φ),±1,±φ), i = 23, . . . , 30.

The singular value decomposition of the configuration matrix has only one zero singular

value. The only vector in the null space is a vector of equal intensities

b1 = (1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1).

The distribution of singular values is given in Table 2.2.

Remaining Archimedean solids.

All of the other Archimedean solids configurations of point vortices have configura-

tion matrices with a trivial null spaces, thus they do not represent relative equilibria.

Singular values and Shannon entropy.

Singular value distributions associated with each relative equilibrium configuration

along with their Shannon entropy are given in Table 2.1 and Table 2.2.
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Configuration σ (unormalized) σ (normalized) Shannon entropy
0.5381, 0.5381, 0.2117, 0.2117,

Cuboctahedron 0.5381, 0.4660, 0.2117, 0.1588, 1.7934
0.4660, 0.1272, 0.1588, 0.0118,
0.1272, 0.1272, 0.0118, 0.0118,
0.0734, 0.0734, 0.0039, 0.0039,
0.0734, 0.0000 0.0039, 0.0000
2.6204, 2.6204, 0.1546, 0.1546,

Icosidodecahedron 2.6204, 2.6204, 0.1546, 0.1546, 2.3599
2.6204, 1.1219, 0.1546, 0.0283,
1.1219, 1.1219, 0.0283, 0.0283,
1.1219, 0.9887, 0.0283, 0.0220,
0.9887, 0.9887, 0.0220, 0.0220,
0.5704, 0.5704, 0.0073, 0.0073,
0.5704, 0.5704, 0.0073, 0.0073,
0.3304, 0.3304, 0.0025, 0.0025,
0.3304, 0.3304, 0.0025, 0.0025,
0.3304, 0.2116, 0.0025, 0.0010,
0.2116, 0.2116, 0.0010, 0.0010,
0.2116, 0.2116, 0.0010, 0.0010,
0.1240, 0.1240, 0.0003, 0.0003,
0.1240, 0.0000 0.0003, 0.0000

Table 2.2: Singular spectra of Archimedean solids relative equilibrium configurations
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Chapter 3

Stability

We start this chapter with introduction to the energy-momentum method1. And then

use the method to investigate stability of symmetric configurations, von Karman vortex

streets and assymetric configurations.

3.1 Background

Let P be a phase space of Hamiltonian system with symplectic structure based on sym-

plectic form Ω. Let H : P → R be the Hamiltonian with vector field XH : P → TP ,

i.e.

DH(x) · δx = Ω(x)(XH , δx),∀x ∈ P, δx ∈ TxP. (3.1.1)

Let Ft : [0, T ] × P → P be the flow of vector field XH . Then equations (3.1.1) can be

rewritten as
d

dx
Ft(x) = X(F (x)). (3.1.2)

Let G be compact continuous symmetry group of the system, g its Lie algebra, Ψg :

P → P action of G on P for each g ∈ G. G is a symmetry group of the systems means

that

H(Ψg(x)) = H(x),∀g ∈ G. (3.1.3)

1More details on the energy-momentum method can be found in [MR99, SLM91].
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For every action ofG on P there is a corresponding vector field ξQ, which can be defined

as

ξP (p) =
d

dt
(exp[εξ] · p)ε=0, (ξ, p) ∈ g× P. (3.1.4)

Let

g · p = {ξQ(q)|ξ ∈ g} ⊂ TpP, (3.1.5)

be a tangent space to the orbit of the group G · p. Assume that G acts freely on P (thus

G · p ∼= G). This also means that ξQ(q) = 0 if and only if ξ = 0.

Let F(P ) = {f |f : P → R}. According to the Noether’s theorem there is linear on

symplectic leaves mapping J : g→ F(P ) such as

XJ(ξ) = ξP ,∀ξ ∈ g, (3.1.6)

Mapping J : P → g∗

J(ξ)(x) =< J(x), ξ > (3.1.7)

is called momentum map.

Now, we can define relative equilibrium using geometric approach. Point xe ∈ P is

called relative equilibrium of Hamiltonian system with symmetry G, if every trajectory

which passes through xe can be represented as

Ft(x) = Ψexp[tξe](xe), (3.1.8)

for some ξe ∈ g. In other words, dynamical orbit which contains xe coinsides with

one-parametric orbit exp[tξr].
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If we differentiate (3.1.8) with respect to time, from equations of motion (3.1.2) and

from (3.1.4) we will get

XH(xe) = (ξe)P (xe). (3.1.9)

In order to find all of the relative equilibrium configurations of the Hamiltonian

system with symmetry, we can use following theorem2

Theorem 3.1.1. xe ∈ P is a relative equilibrium of the dynamical system with Hamil-

tonian H with symmetry group G and momentum map J if and only if there is an ξe ∈ g

such that (xe, ξe) is a critical point of energy-momentum functional Hµe : P × g→ R:

Hµe(x, ξ) = H(x)− (J(x)− µe) · ξ, (3.1.10)

where µe = J(xe).

In other words, relative equilibria are critical points of Hamiltonian H restricted to

the level set J−1(µe) ⊂ P . Energy-momentum functional Hµe from Theorem 3.1.1 can

be treated as Lagrange function in terms of optimization theory with the restrictions

J(x)− µe = 0 and ξ as Lagrange multipliers.

To study stability of the system we will look at the definiteness of the second vari-

ation of the energy-momentum functional. According to the method of Lagrange mul-

tipliers second variation in the restricted variational problem is strictly definite if it is

strictly definite on the variations taken from the space of linearized restrictions. But

for the Hamiltonian system with symmetries second variation is not definite even on

that subspace, since Hamiltonian is invariant under the action of G. It will have neutral

directions where the second variation is equal to zero. These directions will lie in the

2For details on the theorem and its proof see [AM78, Arn89].
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intersection of g ·xe (space tangent to G ·xe) and kernel of operator TxeJ. A result from

[MW74] shows that for equivariant momentum map

g · xe ∩ ker[TxeJ] = gµe , (3.1.11)

where gµe is a tangent space to Gµe · xe and Gµe is an isotropy subgroup of µe. Lie

algebra gµe can be described as

gµe = {ξ ∈ g|ad∗ξµe = 0}. (3.1.12)

Notice, for any ν ∈ g and β ∈ gµe

ad∗νµe · β = µe · [ν, β] = −µe · [β, ν] = −ad∗βµe · ν = 0. (3.1.13)

Equality (3.1.11) can be derived from the equivariance condition if we chose g = exp[εξ]

for arbitrary ξ ∈ g, then

TxeJ · ξ(xe) ≡
d

dε

∣∣∣∣
ε=0

J(Ψexp[εξ](xe)) =

=
d

dε

∣∣∣∣
ε=0

Ad∗exp[−εξ](J(xe)) = ad∗ξµe.

Thus ξP (xe) ∈ g ·xe is a subspace of ker[TxeJ] if and only if ad∗ξµe = 0, or equivalently

ξ ∈ gµe .

Since Hµe|J−1(µe)×g is Gµe invariant

D2Hµe(xe, ξe)((∆x, 0), (δx, 0)) = 0
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for any ∆x ∈ gµe ·xe and δx ∈ TxeJ−1(µe). Thus, relative equilibrium configuration can

not be strict extremum of energy-momentum functional. But it can be strict extremum

on the reduced space.

Theorem 3.1.2. 3 Let xe be a relative equilibrium with orbit E = {exp[ξet] · xe,∀t >

0}. E is a compact set in P . If energy-momentum functional Hµe attains its strict

transversal toE extremum at the relative equilibrium xe, then orbitE is a stable relative

equilibrium.

This theorem allows one simplification. The simplification is based on introduction

of notion of formal stability4

Definition 3.1.3. Relative equilibrium is formally stable if

D2Hµe(xe, ξe)|J (3.1.14)

is definite. Space J is a subspace of J−1(µe) ⊂ P (or equivalently J ⊂ ker[TxeJ]) which

does not include neutrally stable directions.

From the definition of J and representation (3.1.11) we have

J ∼= ker[TzeJ]/(gµe · ze). (3.1.15)

Thus

codim(J) = codim(ker[TeJ]) + dim(gµe). (3.1.16)

The next theorem is a main theorem for the energy-momentum method and it shows that

orbital stability (stability of relative equlibirum) follows from formal stability5.

3Proof of the theorem can be found in [Kur04, Kur05, KY02].

4In order to get more details see [AM78].

5The proof of the theorem can be found in [Pat92].
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Theorem 3.1.4. Assume xe is a generic relative equilibrium with orbit

E = {exp[ξet] · xe,∀t > 0}.

Assume also that Gµe is a proper action and g admits inner product which is invariant

under the action of Gµe . Then E is orbitally stable if xe is a formally stable relative

equilibrium.

Notice, relative equilibrium is generic if

ξP (xe) = ξ · xe 6= 0,∀ξ ∈ g. (3.1.17)

Let us also recall that action of a group is proper, if Ψg is a proper mapping, i.e. preimage

of compact set is a compact set.

Now let us apply the theory from the above to the problem of N point vortices on a

sphere. At first we derive vector form of the method and then coordinate form.

Energy-momentum method in vector form

Since the Hamiltonian of the system of N point vortices is invariant under the action

of SO(3) then G = SO(3). Action of G on is P is a rotation on each copy of S2 in P .

This action is a free canonical action on P . Lie algebra of G can be identified with R3

with bracket

[ξ, η] = ξ × η,∀ξ, η ∈ so(3).

Corresponding to ξ ∈ so(3) vector field is

ξP (x) =
d

dt
exp(ξt) · x

∣∣∣∣
t=0

= (ξ × x1, .., ξ × xN). (3.1.18)
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where x ∈ R3N = P . As it was shown in first section, momentum map is

J(x) = −
N∑
i=1

Γixi, (3.1.19)

Using method of Lagrange multipliers, energy-momentum functional can be written

as
Hµe(x1, ..,xN , ξ) = 1

4π

∑
i<j

ΓiΓj ln(2(1− xixj))+

+
N∑
i=1

[Γi(xi − µe,i) · ξ + ki(||xi||2 − 1)],
(3.1.20)

To find µ which correspond to a relative equilibrium we use condition

δHµe(x, ξ) = 0, (3.1.21)

Or equivalently

Γiξ −
Γi
2π

N∑
j=1,j 6=i

Γj
xj
l2ij

+ 2kixi = 0,

||xi||2 = 1, (3.1.22)

xi = µe,i, i = 1, .., N.

If J 6= 0, since it is an invariant of the system, all the vortices will rotate about J.

The symmetry group is Gµe = SO(2). Orbits will be circles in the planes perpendicular

to J. Lie algebra is one-dimensional (dim(so(2)) = 1).

Derivative of momentum map can be written as

DJ(x) · y = −
N∑
i=1

Γiyi, (3.1.23)
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where y = (y1, ..,yN) ∈ TxP . Thus

kerDJ(x) = {y ∈ TxP |
N∑
i=1

Γiyi = 0}. (3.1.24)

Second variation of energy momentum-functional is

D2Hµe =
∂2Hµe

∂ai∂bj
=


2
r
kiδ

ab − Γi
π

N∑
k=1,k 6=i

Γk
akbk
l4ki
, i = j,

− ΓiΓj
2πl2ij

(
δab + 2

ajbi
l2ij

)
, i 6= j.

(3.1.25)

where i, j = 1, .., N, a, b ∈ {x, y, z}, δab = 1, when a = b and δab = 0, when a 6= b.

Since both SO(3) and SO(2) are compact, thus from all the conditions of the theorems

3.1.4,3.1.2 are satisfied and we can use (3.1.25) to prove stability.

If J = 0 the symmetry group is Gµe = SO(3). Tangent space to the orbit is a

3-dimensional space (since dim so(3) = 3). If we identify so(3) with R3 with vector

product bracket then the tangent space is

gµe = {(x× xe1,x× xe2, ..,x× xeN)|x ∈ R3}, (3.1.26)

where xe ∈ R3N ,xe = (xe1,x
e
2, ..,x

e
N) is a relative equilibrium. Since

N∑
i=1

Γix× xei = x×
N∑
i=1

Γix
e
i = x× 0 = 0, (3.1.27)

thus from (3.1.24) we have gµe ⊂ kerDJ(0).

Complements C1 = kerDJ(xe) 	 gµe and C2 = TP 	 gµe will be the transversal

spaces which we need for the theorems 3.1.4,3.1.2. Good choice of the basis in these

spaces allows us to simplify matrix of the second variation. This ”good choice” is com-

pletely dependent on the configuration.
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Let B1, B2 be the basis sets for the spaces C1 and C2 accordingly. Second variation

of Hµe along B1, B2 is

(δ2Hµe|Bl)i,j = δxTi D
2Hµeδxj, δxi, δxj ∈ Bl, i, j = 1, .., N, l = 1, 2. (3.1.28)

Energy-momentum method in cylindrical coordinates

For the axis-symmetric configurations it is convenient to use cylindrical coordinates

zi =
√

Γi cos θi,

φi = sign(Γi)
√

Γiφi,

i = 1, .., N.

If J 6= 0 we choose Oz to be aligned with J. Then energy-momentum functional will

be

Hµe =
1

4π

∑
i<j

ΓiΓj ln[2(1− zizj −
√

1− z2
i

√
1− z2

j cos(φi − φj))]− ω
N∑
i=1

Γizi,

(3.1.29)

where ω is angular velocity of rotation about J. Since the last term of the functional

depends linearly on coordinates, second variation ofHµe coincides with second variation

of H . For simplicity of computations let us multiply H by 4π. Then the components of

H̄ = 4πH are

∂2H̄

∂φ2
i

=

=
N∑

j=1,j 6=i

ΓiΓj
2

cos(φi − φj)
√

1− z2
i

√
1− z2

j (1− zizj)− (1− z2
i )(1− z2

j )

l2ij
,

∂2H̄

∂φi∂φj
=
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=
ΓiΓj

2

cos(φi − φj)
√

1− z2
i

√
1− z2

j (1− zizj) + (1− z2
i )(1− z2

j )

l2ij
,

∂2H̄

∂z2
i

=

=
N∑

j=1,j 6=i

ΓiΓj
2


(
zj(1− z2

i )− cos(φi − φj)zi
√

1− z2
j

)2

(1− z2
i )
√

1− z2
j l

2
ij

− cos(φi − φj)
(1− z2

i )lij

 ,
∂2H̄

∂zi∂zj
=

=
ΓiΓj

2

cos(φi − φj)
√

1− z2
i

√
1− z2

j (zizj − 1) +
√

1− z2
i

√
1− z2

j√
1− z2

i

√
1− z2

j l
2
ij

,

∂2H̄

∂φ2
i

=
N∑

j=1,j 6=i

ΓiΓj
2

sin(φi − φj)
√

1− z2
i (zi − zj)√

1− z2
j l

2
ij

,

∂2H̄

∂φi∂φj
=

sin(φi − φj)
√

1− z2
i (zi − zj)√

1− z2
j l

2
ij

.

If we know second variation of Hµe then matrix of linearized system can be found

from

d

dt

 z

φ

 = L2N

 z

φ

 = (Ω[)−1H2N

 z

φ

 , (3.1.30)

where (Ω[)−1 inverse of the symplectic form evaluated at the equilibrium and z,φ are

coordinates of zi, φi, i = 1, .., N and H2N = D2(ze,φe) is matrix of the second varia-

tion evaluated at the relative equilibrium.

Cylindrical coordinates on a sphere have 2 singularities at the poles. To remove

this undesired property we introduce mixed atlas on P . For all the point vortices which

are far enough from the poles we use cylindrical coordinates. For pole vortices we use
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cartesian coordinates (xm,n, ym,n) and (xl,s, yl,s) for those close to the north and south

poles respectively. Let

(xl,s, yl,s, zl,s),

zl,s = −
√

1− x2
l,s − y2

l,s,

l = N + 1, .., N +Ns, (3.1.31)

(xm,n, ym,n, zm,n),

zm,n =
√

1− x2
m,n − y2

m,n,

m = N +Ns + 1, .., N +Ns +Nn, (3.1.32)

From the equations of motion we have

ẋl,s =
N∑
i=1

Γi

2πl2il
(zl,s sinφi

√
1− z2

i − yl,szi) +

+
N+Ns∑

j=N+1,j 6=l

Γj

2πl2jl
(yj,szl,s − yl,szj,s) +

+
N+Ns+Nn∑
k=N+Ns+1

Γk

2πl2kl
(yk,nzl,s − yl,szk,n),

ẏl,s =
N∑
i=1

Γi

2πl2il
(−zl,s cosφi

√
1− z2

i + xl,szi) +

+
N+Ns∑

j=N+1,j 6=l

Γj

2πl2jl
(−xj,szl,s + xl,szj,s) +

+
N+Ns+Nn∑
k=N+Ns+1

Γk

2πl2kl
(−xk,nzl,s + xl,szk,n),
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and

ẋm,n =
N∑
i=1

Γi

2πl2im
(zm,n sinφi

√
1− z2

i − ym,nzi) +

+
N+Ns∑
j=N+1

Γj

2πl2jm
(yj,szm,n − ym,nzj,s) +

+
N+Ns+Nn∑

k=N+Ns+1,k 6=m

Γk

2πl2km
(yk,nzm,n − ym,nzk,n),

ẏm,n =
N∑
i=1

Γi

2πl2im
(−zm,n cosφi

√
1− z2

i + xm,nzi) +

+
N+Ns∑
j=N+1

Γj

2πl2jm
(−xj,szm,n + xm,nzj,s) +

+
N+Ns+Nn∑

k=N+Ns+1,k 6=m

Γk

2πl2km
(−xk,nzm,n + xm,nzk,n).

These equations can be written as

ẋl,s = −zl,s
Γs

∂H

∂yl,s
, ẏl,s =

zl,s
Γs

∂H

∂xl,s
,

ẋm,n = −zm,n
Γn

∂H

∂ym,n
, ẏm,n =

zm,n
Γn

∂H

∂xm,n
,

where H is a Hamiltonian in this mixed atlas

H =
1

4π

( ∑
1≤i<j≤N

ΓiΓj ln[2(1− zizj −
√

1− z2
i

√
1− z2

j cos(φi − φj))]+

+

i=N,j=N+Ns∑
i=1,j=N+1

ΓiΓj ln[2(1−
√

1− z2
i (xj,s cosφi + yj,s sinφi)− zj,szi)] +
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+

i=N,j=N+Ns+Nn∑
i=1,j=N+Ns+1

ΓiΓj ln[2(1−
√

1− z2
i (xj,n cosφi + yj,n sinφi)− zj,nzi)]−

+
∑

N+1≤i<j≤N+Ns+1

ΓiΓj ln[2(1− xi,sxj,s − yi,syj,s − zi,szj,s)]−

+
∑

N+Ns+1≤i<j≤N+Ns+Nn+1

ΓiΓj ln[2(1− xi,nxj,n − yi,nyj,n − zi,nzj,n)]−

+

i=N+Ns,j=N+Ns+Nn∑
i=N+1,j=N+Ns+1

ΓiΓj ln[2(1− xi,sxj,n − yi,syj,n − zi,szj,n)]

)
. (3.1.33)

Notice that zi,n, zj,s are the functions of xi,s, yi,s, xj,n, yj,n

zi,s = −
√

1− x2
i,s − y2

i,s,

zj,n =
√

1− x2
j,n − y2

j,n.

Energy-momentum functional will have following form

Hµe = H − ω

(
N∑
i=1

Γizi −
N+Ns∑
i=N+1

Γi

√
1− x2

i,s − y2
i,s+

+
N+Ns+Nn∑
i=N+Ns+1

Γi

√
1− x2

i,n − y2
i,n

)
. (3.1.34)

Notice, that in contrast to simple cylindrical coordinates, last term of energy momentum

functional is no longer linearly dependent on coordinates. Thus second variation of Hµe

is different from the second variation of H .

If we have at most one vortex near the north pole and at most one near the south, i.e.

if

Ns ≤ 1, Nn ≤ 1.
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the Hamiltonian (3.1.33) and energy-momentum functional (3.1.34) can be simplified

to

H =
1

4π

( ∑
1≤i<j≤N

ΓiΓj ln[2(1− zizj −
√

1− z2
i

√
1− z2

j cos(φi − φj))]+

+
N∑
i=1

ΓiΓs ln[2(1−
√

1− z2
i (x1,s cosφi + y1,s sinφi)− z1,szi)] +

+
N∑
i=1

ΓiΓn ln[2(1−
√

1− z2
i (x1,n cosφi + y1,n sinφi)− z1,nzi)] +

+ΓsΓn ln[2(1− x1,sx1,n − y1,sy1,n − z1,sz1,n)]) , (3.1.35)

Hµe = H − ω

(
N∑
i=1

Γizi − Γs

√
1− x2

1,s − y2
1,s + Γn

√
1− x2

1,n − y2
1,n

)
, (3.1.36)

where Γn,Γs are intensities of north and south polar vortices and z1,s =√
1− x2

1,s − y2
1,s, z1,n =

√
1− x2

1,n − y2
1,n.

Symmetry adapted basis

In order to simplify the computation of eigenvalues of the second variation of the

energy-momentum functional, we will be using symmetry adapted basis whenever it

will be available. The basis represents the invariant subspaces of the system symmetries.

Consider a subgroup Gd of permutation group SN . Let the action g ∈ Gd of the

group be

g · (x1, . . . , xN)T = (xg(1), . . . , xg(N))
T . (3.1.37)

There are irreducible representations Vi ⊂ RN , i = 1, . . . ,M , such that

g · Vi = Vi, ∀g ∈ Gd, (3.1.38)
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and let vi,j ∈ Vi be the basis of the space Vi. Then the change of variables

(x1, . . . , xN)T = y1v1,1 + . . .+ yNvkM ,M , (3.1.39)

where kM is a number of basis vectors in VM . This will give us a transformation matrix

W = (vi,j). Since the transformation of coordinates is linear, the derivatives of the coor-

dinate variables will transform according to the JacobianW . And the second derivatives

of the Hµe are
d2Hµe

dy
= W T d

2Hµe

dx
W. (3.1.40)

Depending on the symmetry, some of the invariant subspaces will give us blocks of

separated variables, which will allow us to block diagonalize the Hessian matrix.

3.2 Stability of polar vortex pair

Since motion of 2 point vortices is an integrable problem, we can prove stability of

vortex pair using exact solution of the problem. To find the solution, consider equations

of the motion in vector form

ẋi =
Γj
2π

xj × xi
(xi − xj)2

=
1

2πl212

(Γ1x1 + Γ2x2)× xi =
1

2πl212

J× xi,

i = 1, 2, j = 1, 2, j 6= i,

||xi||2 = 1, i = 1, 2. (3.2.1)

From (1.2.3) we have
dl212

dt
= 0.
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Figure 3.1: Perturbed degenerate vortex pair

Thus l212 = const for any configuration of 2 point vortices and equations (3.2.1) describe

rotations of xi, i = 1, 2 around constant vector 1
2πl212

J.

Theorem 3.2.1. Degenerate vortex pair configuration (x1 = −x2, Γ1 = −Γ2) is stable

equilibrium configuration.

Proof. By adding small perturbations δx1 and δx2 to the given configuration we get

nondegenerate vortex pair configuration. This configuration will rotate around fixed

vector J̃ = Γ1(x1 + δx1) + Γ2(x2 + δx2) and thus it will stay within spherical caps

centered at x1,x2 with angular radius α equal to

α = cos−1

(
J̃ · J
||J̃||||J||

)
+ max{cos−1

(
J̃ · (xi + δxi)

||J̃||||xi + δxi||

)
| i = 1, 2}.

Notice, that for any two perturbations δx1, δx2 from spherical caps with radius α vectors

J̃,J will stay inside one cap with radius α. Thus for any ε > 0 exists α = ε/3 > 0, such

that for any perturbations δx1, δx2 from spherical caps centered at x1,x2 with angular
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radius α perturbed system will stay within spherical caps centered at x1,x2 with radius

ε.

Thus polar vortex pair with equal and opposite intensities is a stable configuration

of point vortices.

3.3 Stability of tetrahedral configurations

As it was shown in previous section, tetrahedral configurations are relative equilibrium

configuration for any choice of Γi, i = 1, .., 4. In this section we will start with stability

of non-degenerate configurations (J 6= 0).

Theorem 3.3.1. Non-degenerate tetrahedral configurations are nonlinearly stable if

Γ3Γ4(Γ4
1Γ2

2 + 2Γ3
1Γ3

2 + Γ2
1Γ4

2 + Γ4
1Γ2Γ3 − 5Γ3

1Γ2
2Γ3 − 5Γ2

1Γ3
2Γ3 + Γ1Γ4

2Γ3 +

+Γ3
1Γ2Γ2

3 + 2Γ2
1Γ2

2Γ2
3 + Γ1Γ3

2Γ2
3 + Γ4

1Γ2Γ4 − 5Γ3
1Γ2

2Γ4 − 5Γ2
1Γ3

2Γ4 +

+Γ1Γ4
2Γ4 − 8Γ3

1Γ2Γ3Γ4 + 32Γ2
1Γ2

2Γ3Γ4 − 8Γ1Γ3
2Γ3Γ4 + Γ3

1Γ2
3Γ4 −

−5Γ2
1Γ2Γ2

3Γ4 − 5Γ1Γ2
2Γ2

3Γ4 + Γ3
2Γ2

3Γ4 + Γ3
1Γ2Γ2

4 + 2Γ2
1Γ2

2Γ2
4 + Γ1Γ3

2Γ2
4 +

+Γ3
1Γ3Γ2

4 − 5Γ2
1Γ2Γ3Γ2

4 − 5Γ1Γ2
2Γ3Γ2

4 + Γ3
2Γ3Γ2

4 + Γ2
1Γ2

3Γ2
4 + 2Γ1Γ2Γ2

3Γ2
4 +

+Γ2
2Γ2

3Γ2
4) > 0, (3.3.1)∑

i>j

Γ2
iΓ

2
j +

∑
i 6=j 6=k

Γ2
iΓjΓk − 30Γ1Γ2Γ3Γ4 > 0,

Γ1Γ2(Γ2
1(Γ2 + Γ3) + Γ2Γ3(Γ2 + Γ3) + Γ1(Γ2

2 − 6Γ2Γ3 + Γ2
3))×

×(Γ2Γ2
3Γ4(Γ2Γ2

3(2Γ3 − Γ4)Γ4 + Γ3
3Γ2

4 + Γ3
2(Γ3 + Γ4)2 +

+Γ2
2(Γ3

3 − Γ3Γ2
4)) + Γ4

1(Γ2
3Γ4(Γ3 + Γ4)2 + Γ3

2(Γ2
3 + 3Γ3Γ4 + Γ2

4) +

+Γ2Γ3(Γ3
3 − 2Γ2

3Γ4 − 5Γ3Γ2
4 − 2Γ3

4) + Γ2
2(2Γ3

3 + 2Γ3Γ2
4 + Γ3

4)) +

+Γ2
1(Γ4

3(2Γ3 − Γ4)Γ2
4 − Γ2Γ3

3Γ4(4Γ2
3 − 8Γ3Γ4 + Γ2

4) +
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+Γ3
2Γ3(−4Γ3

3 + 14Γ2
3Γ4 + 26Γ3Γ2

4 − 5Γ3
4) + Γ4

2(2Γ3
3 + 2Γ3Γ2

4 + Γ3
4) +

+2Γ2
2Γ2

3(Γ3
3 + 13Γ2

3Γ4 − 19Γ3Γ2
4 + 3Γ3

4)) + Γ1Γ3(Γ4
3Γ3

4 −

−2Γ2Γ3
3Γ2

4(2Γ3 + Γ4)− Γ2
2Γ2

3Γ4(4Γ2
3 − 8Γ3Γ4 + Γ2

4) +

+Γ4
2(Γ3

3 − 2Γ2
3Γ4 − 5Γ3Γ2

4 − 2Γ3
4) + Γ3

2Γ3(Γ3
3 − 14Γ2

3Γ4 − 5Γ3Γ2
4 + 4Γ3

4)) +

+Γ3
1(Γ3

3Γ4(Γ2
3 − Γ2

4) + Γ4
2(Γ2

3 + 3Γ3Γ4 + Γ2
4) + Γ2

2Γ3(−4Γ3
3 + 14Γ2

3Γ4 +

+26Γ3Γ2
4 − 5Γ3

4)− 2Γ3
2(2Γ3

3 + 12Γ2
3Γ4 + 10Γ3Γ2

4 − Γ3
4) +

+Γ2Γ2
3(Γ3

3 − 14Γ2
3Γ4 − 5Γ3Γ2

4 + 4Γ3
4))) > 0.

Proof. To prove this theorem we will use vector form of energy-momentum method.

Since J 6= 0, thus G = SO(2)(i.e. symmetries are rotations about vector J). Tangent

to the orbit space is gµe = span{yo = (J × x1,J × x2,J × x3,J × x4)}. To find C1

we choose two linearly independent vectors v1,v2 ∈ R3 in each copy of S2. Lets also

choose these vectors in such a way, that the vectors x1,x2,x3,x4,J and vectors v1,v2

are not co-planar. Consider following basis for the TxeP :

e(1) = (x1 × v1,0,0,0),

e(2) = (0,x2 × v1,0,0),

e(3) = (0,0,x3 × v1,0),

e(4) = (0,0,0,x4 × v1),

e(5) = (x1 × v2,0,0,0),

e(6) = (0,x2 × v2,0,0),

e(7) = (0,0,x3 × v2,0),

e(8) = (0,0,0,x3 × v2),
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Let αi, i = 1, .., 4 βi, i = 1, .., 4 be the solutions of


4∑
i=1

Γiαixi = v1, or
4∑
i=1

Γiαixi = 0,

4∑
i=1

Γiβixi = v2, or
4∑
i=1

Γiβixi = 0.
(3.3.2)

Then y =
4∑
i=1

αie
(i) +

4∑
i=1

βie
(i+4) will belong to kerDJ(xe), since

DJ · y = −1

r

(
4∑
i=1

Γiαixi × v1 +
4∑
i=1

Γiβixi × v2

)
= 0,

From J /∈ span{v1,v2} we have

J /∈ K = span{
4∑
i=1

αie
(i) +

4∑
i=1

βie
(i+4)|αi, βi - solutions of (3.3.2)}.

From (3.1.24) we have that dimension of kerDJ(xe) is 2N−3 = 8−3 = 5. Dimension

of gµe is 1, thus dim(C1) = 5 − 1 = 4. Since every equation in (3.3.2) has N − 2 = 2

linearly independent solution and vectors v1, v2 are linearly independent we obtain

K = C1.

Let v1 = Γ1x1 + Γ2x2 + Γ3x3 and v1 = Γ1x1 + Γ2x2 + Γ4x4. Since Γ1Γ2Γ3Γ4 6=

0, thus x1,x2,x3,x4,J /∈ span{v1,v2}. One of the simplest solutions of the system

(3.3.2) are

α
(1)
1 = 1, α

(1)
2 = 1, α

(1)
3 = 1, α

(1)
4 = 0, β

(1)
i = 0, i = 1, .., 4.

β
(2)
1 = 1, β

(2)
2 = 1, β

(2)
3 = 0, β

(2)
4 = 1, α

(2)
i = 0, i = 1, .., 4.

α
(3)
1 =

1

Γ1

, α
(3)
2 =

1

Γ2

, α
(3)
3 =

1

Γ3

, α
(3)
4 =

1

Γ4

, β
(3)
i = 0, i = 1, .., 4.
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β
(4)
1 =

1

Γ1

, β
(4)
2 =

1

Γ2

, β
(4)
3 =

1

Γ3

, β
(4)
4 =

1

Γ4

, α
(4)
i = 0, i = 1, .., 4.

Thus basis of C1 is

ε(1) = e(1) + e(2) + e(3) =

= (Γ2x1 × x2 + Γ3x1 × x3,−Γ1x1 × x2 + Γ3x2 × x3,

−Γ1x1 × x3 − Γ2x2 × x3,0),

ε(2) = e(5) + e(6) + e(8) =

= (Γ2x1 × x2 + Γ4x1 × x4,−Γ1x1 × x2 + Γ4x2 × x4,

0,−Γ1x1 × x4 − Γ2x2 × x4),

ε(3) =
1

Γ1

e(1) +
1

Γ2

e(2) +
1

Γ3

e(3) +
1

Γ4

e(4) =

= (
Γ2

Γ1

x1 × x2 +
Γ3

Γ1

x1 × x3,−
Γ1

Γ2

x1 × x2 +
Γ3

Γ2

x2 × x3,

−Γ1

Γ3

x1 × x3 −
Γ2

Γ3

x2 × x3,−
Γ1

Γ4

x1 × x4 −
Γ2

Γ4

x2 × x4 −
Γ3

Γ4

x3 × x4),

ε(4) =
1

Γ1

e(5) +
1

Γ2

e(6) +
1

Γ3

e(7) +
1

Γ4

e(8) =

= (
Γ2

Γ1

x1 × x2 +
Γ4

Γ1

x1 × x4,−
Γ1

Γ2

x1 × x2 +
Γ4

Γ2

x2 × x4,

−Γ1

Γ3

x1 × x3 −
Γ2

Γ3

x2 × x3 +
Γ4

Γ3

x3 × x4,−
Γ1

Γ4

x1 × x4 −
Γ2

Γ4

x2 × x4).

If we choose the coordinates of the vertices

x1 = (
1√
3
,

1√
3
,

1√
3

),

x2 = (
1√
3
,− 1√

3
,− 1√

3
),

x3 = (− 1√
3
,

1√
3
,− 1√

3
),
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x4 = (− 1√
3
,− 1√

3
,

1√
3

).

Then

x1 × x2 = (0,
4

3
,−4

3
),

x1 × x3 = (−4

3
, 0,

4

3
),

x1 × x4 = (
4

3
,−4

3
, 0),

x2 × x3 = (
4

3
,
4

3
, 0),

x2 × x4 = (−4

3
, 0,−4

3
),

x3 × x4 = (0,
4

3
,
4

3
).

From (3.1.22) we have

ki = −3Γ2
i

32π
, i = 1, .., 4,

ξ = (ξ1, ξ2, ξ3),

ξ1 =

√
3(Γ1 + Γ2 − Γ3 − Γ4)

16π
,

ξ2 =

√
3(Γ1 − Γ2 + Γ3 − Γ4)

16π
,

ξ3 =

√
3(Γ1 − Γ2 − Γ3 + Γ4)

16π
.

Second variation of energy-momentum along ε(j), j = 1, .., 4 is

D2Hµe|ε(j),j=1,..,4 = (dij)i=1,..,4,j=1,..,4,
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where

d11 = −1

3
Γ2

1Γ2Γ4 −
1

3
Γ1Γ2

2Γ4 −
1

3
Γ2

1Γ3Γ4 + 2Γ1Γ2Γ3Γ4 −

−1

3
Γ2

2Γ3Γ4 −
1

3
Γ1Γ2

3Γ4 −
1

3
Γ2Γ2

3Γ4,

d22 = −1

3
Γ2

1Γ2Γ3 −
1

3
Γ1Γ2

2Γ3 −
1

3
Γ2

1Γ3Γ4 + 2Γ1Γ2Γ3Γ4 −

−1

3
Γ2

2Γ3Γ4 −
1

3
Γ1Γ3Γ2

4 −
1

3
Γ2Γ3Γ2

4,

d33 = 2Γ2
1 −

4Γ1Γ2

3
+ 2Γ2

2 −
Γ2

1Γ2

3Γ3

− Γ1Γ2
2

3Γ3

− 4Γ1Γ3

3
− Γ2

1Γ3

3Γ2

− 4Γ2Γ3

3
−

−Γ2
2Γ3

3Γ1

+ 2Γ2
3 −

Γ1Γ2
3

3Γ2

− Γ2Γ2
3

3Γ1

− Γ2
1Γ2

3Γ4

− Γ1Γ2
2

3Γ4

− Γ2
1Γ3

3Γ4

+
2Γ1Γ2Γ3

Γ4

−

−Γ2
2Γ3

3Γ4

− Γ1Γ2
3

3Γ4

− Γ2Γ2
3

3Γ4

− Γ2
1Γ4

3Γ2

− Γ2
2Γ4

3Γ1

− Γ2
1Γ4

3Γ3

+
2Γ1Γ2Γ4

3Γ3

− Γ2
2Γ4

3Γ3

+

+
2Γ1Γ3Γ4

3Γ2

+
2Γ2Γ3Γ4

3Γ1

− Γ2
3Γ4

3Γ1

− Γ2
3Γ4

3Γ2

,

d44 = 2Γ2
1 −

4Γ1Γ2

3
+ 2Γ2

2 −
Γ2

1Γ2

3Γ3

− Γ1Γ2
2

3Γ3

− Γ2
1Γ3

3Γ2

− Γ2
2Γ3

3Γ1

− Γ2
1Γ2

3Γ4

−

−Γ1Γ2
2

3Γ4

− Γ2
1Γ3

3Γ4

+
2Γ1Γ2Γ3

3Γ4

− Γ2
2Γ3

3Γ4

− 4Γ1Γ4

3
− Γ2

1Γ4

3Γ2

− 4Γ2Γ4

3
− Γ2

2Γ4

3Γ1

−

−Γ2
1Γ4

3Γ3

+
2Γ1Γ2Γ4

Γ3

− Γ2
2Γ4

3Γ3

+
2Γ1Γ3Γ4

3Γ2

+
2Γ2Γ3Γ4

3Γ1

+ 2Γ2
4 −

Γ1Γ2
4

3Γ2

−

−Γ2Γ2
4

3Γ1

− Γ1Γ2
4

3Γ3

− Γ2Γ2
4

3Γ3

− Γ3Γ2
4

3Γ1

− Γ3Γ2
4

3Γ2

,

d12 = d21 =
1

3
Γ2

1Γ3Γ4 −
2

3
Γ1Γ2Γ3Γ4 +

1

3
Γ2

2Γ3Γ4,

d13 = d31 =
1

3
Γ2

1Γ2 +
1

3
Γ1Γ2

2 +
1

3
Γ2

1Γ3 − 2Γ1Γ2Γ3 +
1

3
Γ2

2Γ3 +
1

3
Γ1Γ2

3 +

+
1

3
Γ2Γ2

3 −
2

3
Γ2

1Γ4 +
2

3
Γ1Γ2Γ4 −

2

3
Γ2

2Γ4 +
2

3
Γ1Γ3Γ4 +

2

3
Γ2Γ3Γ4 −

2

3
Γ2

3Γ4,
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d14 = d41 =
1

3
Γ2

1Γ2 +
1

3
Γ1Γ2

2 +
1

3
Γ2

1Γ3 −
4

3
Γ1Γ2Γ3 +

1

3
Γ2

2Γ3 −
2

3
Γ2

1Γ4 +

+
2

3
Γ1Γ2Γ4 −

2

3
Γ2

2Γ4 +
1

3
Γ1Γ3Γ4 +

1

3
Γ2Γ3Γ4,

d23 = d32 =
1

3
Γ2

1Γ2 +
1

3
Γ1Γ2

2 −
2

3
Γ2

1Γ3 +
2

3
Γ1Γ2Γ3 −

2

3
Γ2

2Γ3 +
1

3
Γ2

1Γ4 −

−4

3
Γ1Γ2Γ4 +

1

3
Γ2

2Γ4 +
1

3
Γ1Γ3Γ4 +

1

3
Γ2Γ3Γ4,

d24 = d42 =
1

3
Γ2

1Γ2 +
1

3
Γ1Γ2

2 −
2

3
Γ2

1Γ3 +
2

3
Γ1Γ2Γ3 −

2

3
Γ2

2Γ3 +
1

3
Γ2

1Γ4 −

−2Γ1Γ2Γ4 +
1

3
Γ2

2Γ4 +
2

3
Γ1Γ3Γ4 +

2

3
Γ2Γ3Γ4 +

1

3
Γ1Γ2

4 +
1

3
Γ2Γ2

4 −
2

3
Γ3Γ2

4,

d34 = d43 = 2Γ2
1 −

4Γ1Γ2

3
+ 2Γ2

2 −
Γ2

1Γ2

3Γ3

− Γ1Γ2
2

3Γ3

− 2Γ1Γ3

3
− Γ2

1Γ3

3Γ2

−

−2Γ2Γ3

3
− Γ2

2Γ3

3Γ1

− Γ2
1Γ2

3Γ4

− Γ1Γ2
2

3Γ4

− Γ2
1Γ3

3Γ4

+
4Γ1Γ2Γ3

3Γ4

− Γ2
2Γ3

3Γ4

− 2Γ1Γ4

3
−

−Γ2
1Γ4

3Γ2

− 2Γ2Γ4

3
− Γ2

2Γ4

3Γ1

− Γ2
1Γ4

3Γ3

+
4Γ1Γ2Γ4

3Γ3

− Γ2
2Γ4

3Γ3

− 2Γ3Γ4

3
+

+
Γ1Γ3Γ4

Γ2

+
Γ2Γ3Γ4

Γ1

.

According to Sylvester criterion this form will be positive definite if and only if 2nd

and 4th minors are positive along with a product of 1st and 3d minor. After some

simplifications these conditions can be transformed to (3.3.1).

Without loss of generality we can put Γ1 = 1. Then 3-parametric stable region is

shown on Figure 3.2 and Figure 3.3.

Now consider degenerate case (J = 0). To get
∑4

i=1 Γixi = 0 we must have

Γ1x1 = −
∑4

i=2 Γixi. For tetrahedron it is possible only if Γ2 = Γ3 = Γ4. By the

index rotation symmetry we will get Γ1 = Γ2 = Γ3 = Γ4. This means that only if

Γi = Γj we have degenerate tetrahedral relative equilibrium configuration.
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Figure 3.2: Stable region for tetrahedral configuration

Theorem 3.3.2. Degenerate tetrahedral configuration (J = 0) is a stable relative equi-

librium configuration.

Proof. Without loss of generality, assume

Γ1 = Γ2 = Γ3 = Γ4 = 1. (3.3.3)

For this theorem we will use coordinate form of the energy-momentum method. Let us

choose following coordinates for the vertices

z1 = 1√
3
, ϕ1 =

π

4
,

z2 = − 1√
3
, ϕ2 =

3π

4
,

z3 = − 1√
3
, ϕ3 = −π

4
,
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Figure 3.3: Stable region for tetrahedral configuration. Plane Γ1 = 1,Γ2 = 2

z4 = 1√
3
, ϕ4 = −3π

4
. (3.3.4)

Then second variation of the energy-momentum functional will have following eigen-

values

−9

4
,−21

16
,−21

16
,−9

8
,−1

2
, 0, 0, 0

Since dim so(3) = 3, we have to have 3 zero eigenvalues. All the others correspond

to the transversal directions and, as we can see, they have the same sign. Thus by the

Theorem 3.1.2 the configuration is stable.

3.4 Stability of octahedral configurations

Similarly to tetrahedral case, octahedral configurations will be relative equilibria for any

choice of Γi, i = 1, .., 6. Using techniques developed in previous section, we get
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Theorem 3.4.1. Non-degenerate octahedral configurations (J 6= 0) are nonlinearly

stable if

det[(dij)i,j=1,...,2] > 0,

det[(dij)i,j=1,...,4] > 0,

det[(dij)i,j=1,...,6] > 0,

det[(dij)i,j=1,...,8] > 0,

det[(dij)i,j=1,...,1] det[(dij)i,j=1,...,3] > 0,

det[(dij)i,j=1,...,1] det[(dij)i,j=1,...,5] > 0,

det[(dij)i,j=1,...,1] det[(dij)i,j=1,...,7] > 0,

where

d11 =
1

2
Γ1Γ3 (Γ3 (Γ2 − 2 (Γ5 + Γ6)) + Γ1 (Γ4 − 2 (Γ5 + Γ6))) ,

d12 = d21 = Γ2
1Γ3Γ6,

d13 = d31 = −1

2
Γ2

3 (Γ1 − Γ2 + 2 (Γ5 + Γ6)) ,

d14 = d41 = −1

2
Γ2

1 (Γ3 − Γ4 + 2 (Γ5 + Γ6)) ,

d15 = d51 = 2Γ1Γ3 (Γ1 + Γ3) ,

d16 = d61 = 0,

d17 = d71 = −1

2
Γ2

1 (Γ3 − Γ4 + 2 (Γ5 + Γ6)) ,

d18 = d81 = 2Γ2
1Γ3,

d22 =
1

2
Γ1

(
(Γ2 − 2 (Γ3 + Γ4)) Γ2

5 − Γ1

(
2Γ2

5 + 3Γ6Γ5 + 2Γ6 (Γ3 + Γ4 + Γ6)
))
,

d23 = d32 = 0,

d24 = d42 = 2Γ2
1Γ6,
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d25 = d52 = −1

2
Γ2

1 (2Γ3 + 2Γ4 − Γ5 + Γ6) ,

d26 = d62 =
1

2
(Γ1 − Γ2 + 2 (Γ3 + Γ4)) Γ5Γ6,

d27 = d72 = 2Γ1 (Γ1 − Γ5) Γ6,

d28 = d82 = −1

2
Γ2

1 (2Γ3 + 2Γ4 − Γ5 + Γ6) ,

d33 =
Γ2

3 (Γ2
1 − 2 (Γ2 + Γ5 + Γ6) Γ1 + Γ2 (Γ2 − 2 (Γ5 + Γ6)))

2Γ1Γ2

,

d34 = d43 = 0,

d35 = d53 = 4Γ2
3,

d36 = d63 = 0,

d37 = d73 = 0,

d38 = d83 = 0,

d44 =
Γ2

1 (Γ2
3 − 2 (Γ4 + Γ5 + Γ6) Γ3 + Γ4 (Γ4 − 2 (Γ5 + Γ6)))

2Γ3Γ4

,

d45 = d54 = 4Γ2
1,

d46 = d64 = 0,

d47 = d74 =
Γ2

1 (Γ2
3 − 2 (Γ4 + Γ5 + Γ6) Γ3 + Γ4 (Γ4 − 2 (Γ5 + Γ6)))

2Γ3Γ4

,

d48 = d84 = 4Γ2
1,

d55 =
((Γ5 − Γ6) 2 − 2Γ3 (Γ5 + Γ6)− 2Γ4 (Γ5 + Γ6)) Γ2

1

2Γ5Γ6

−

− 2Γ2
3 (Γ5 + Γ6) Γ1 + Γ2

3 ((Γ5 − Γ6) 2 − 2Γ2 (Γ5 + Γ6))

2Γ5Γ6

,

d56 = d65 = 0,

d57 = d75 = 4Γ2
1,

d58 = d85 =
Γ2

1 ((Γ5 − Γ6) 2 − 2Γ3 (Γ5 + Γ6)− 2Γ4 (Γ5 + Γ6))

2Γ5Γ6

,

d66 =
(Γ2

1 − 2 (Γ2 + Γ3 + Γ4) Γ1 + Γ2 (Γ2 − 2 (Γ3 + Γ4))) Γ2
6

2Γ1Γ2

,
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d67 = d76 = 4Γ2
6,

d68 = d86 = 0,

d77 =
((Γ3 − Γ4) 2 − 2 (Γ3 + Γ4) Γ5) Γ2

1 − 2 (Γ3 + Γ4) Γ6Γ2
1

2Γ3Γ4

+

+
((Γ3 − Γ4) 2 − 2Γ1 (Γ3 + Γ4)− 2Γ2 (Γ3 + Γ4)) Γ2

6

2Γ3Γ4

,

d78 = d87 = 4Γ2
1,

d88 =
Γ2

1 ((Γ5 − Γ6) 2 − 2Γ3 (Γ5 + Γ6)− 2Γ4 (Γ5 + Γ6))

2Γ5Γ6

.

Proof. To prove the theorem we follow the steps we did for the tetrahedral configuration.

Since J 6= 0, thus G = SO(2) and tangent to the orbit space is gµe = span{yo =

(J × x1,J × x2,J × x3,J × x4,J × x5,J × x6)}. To find C1 we choose two linearly

independent vectors v1,v2 ∈ R3 in each copy of S2. Lets also choose these vectors to

be non-coplanar with any two from x1,x2,x3,x4,x5,x6,J. Consider basis for TxeP :

e(1) = (x1 × v1,0,0,0,0,0),

e(2) = (0,x2 × v1,0,0,0,0),

e(3) = (0,0,x3 × v1,0,0,0),

e(4) = (0,0,0,x4 × v1,0,0),

e(5) = (0,0,0,0,x5 × v1,0),

e(6) = (0,0,0,0,0,x6 × v1),

e(7) = (x1 × v2,0,0,0,0,0),

e(8) = (0,x2 × v2,0,0,0,0),

e(9) = (0,0,x3 × v2,0,0,0),

e(10) = (0,0,0,x4 × v2,0,0),
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e(11) = (0,0,0,0,x5 × v2,0),

e(12) = (0,0,0,0,0,x6 × v2),

Let αi, i = 1, .., 6 βi, i = 1, .., 6 be the solutions of


6∑
i=1

Γiαixi = v1, or
6∑
i=1

Γiαixi = 0,

6∑
i=1

Γiβixi = v2, or
6∑
i=1

Γiβixi = 0.
(3.4.1)

Then y =
6∑
i=1

αie
(i) +

4∑
i=1

βie
(i+4) will belong to kerDJ(xe). From J /∈ span{v1,v2}

we have

J /∈ K = span{
6∑
i=1

αie
(i) +

6∑
i=1

βie
(i+6)|αi, βi - solutions of (3.4.1)}.

From (3.1.24) we have that dimension of kerDJ(xe) is 2N−3 = 12−3 = 9. Dimension

of gµe is 1, thus dim(C1) = 9 − 1 = 8. Since every equation in (3.4.1) has N − 2 = 4

linearly independent solution and vectors v1, v2 are linearly independent we obtain

K = C1.

Choose the coordinates of the vertices

x1 = (1, 0, 0),

x2 = (−1, 0, 0),

x3 = (0, 1, 0),

x4 = (0,−1, 0),

x5 = (0, 0, 1),

x6 = (0, 0,−1).
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Then from (3.1.22) we have

k1 =
Γ1Γ2 − 2Γ2

1

16π
, k2 =

Γ1Γ2 − 2Γ2
2

16π
,

k3 =
Γ3Γ4 − 2Γ2

3

16π
, k4 =

Γ3Γ4 − 2Γ2
4

16π
,

k5 =
Γ5Γ6 − 2Γ2

5

16π
, k6 =

Γ5Γ6 − 2Γ2
6

16π
,

ξ =

(
Γ1 − Γ2

4π
,
Γ3 − Γ4

4π
,
Γ5 − Γ6

4π

)
.

Let v1 = Γ1x1 + Γ3x3 + Γ5x5 and v2 = Γ1x1 + Γ3x3 + Γ6x6. Since none of

the Γi, i = 1, .., 6 is zero, x1,x2,x3,x4,x5,x6,J are not in span{v1,v2}. One of the

simplest solutions of the system (3.4.1) are

α
(1)
1 = 1, α

(1)
3 = 1, α

(1)
5 = 1, α

(1)
j = 0, β

(1)
i = 0, i = 1, .., 6, j = 2, 4, 6.

β
(2)
1 = 1, β

(2)
3 = 1, β

(2)
6 = 1, β

(2)
j = 0, α

(2)
i = 0, i = 1, .., 6, j = 2, 4, 5.

α
(3)
1 =

1

Γ1

, α
(3)
2 =

1

Γ2

, α
(3)
j = 0, β

(3)
i = 0, i = 1, .., 6, j = 3, .., 6.

α
(4)
3 =

1

Γ3

, α
(4)
4 =

1

Γ4

, α
(4)
j = 0, β

(4)
i = 0, i = 1, .., 6, j = 1, 2, 5, 6.

α
(5)
5 =

1

Γ5

, α
(5)
6 =

1

Γ6

, α
(5)
j = 0, β

(5)
i = 0, i = 1, .., 6, j = 1, .., 4.

β
(6)
1 =

1

Γ1

, β
(6)
2 =

1

Γ2

, β
(6)
j = 0, α

(6)
i = 0, i = 1, .., 6, j = 3, .., 6.

β
(7)
3 =

1

Γ3

, β
(7)
4 =

1

Γ4

, β
(7)
j = 0, α

(7)
i = 0, i = 1, .., 6, j = 1, 2, 5, 6.

β
(8)
5 =

1

Γ5

, β
(8)
6 =

1

Γ6

, β
(8)
j = 0, α

(8)
i = 0, i = 1, .., 6, j = 1, .., 4.
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Thus basis of C1 is

ε(1) = e(1) + e(3) + e(5),

ε(2) = e(7) + e(9) + e(12),

ε(3) =
1

Γ1

e(1) +
1

Γ2

e(2),

ε(4) =
1

Γ3

e(3) +
1

Γ4

e(4),

ε(5) =
1

Γ5

e(5) +
1

Γ6

e(6),

ε(6) =
1

Γ1

e(7) +
1

Γ2

e(8),

ε(7) =
1

Γ3

e(9) +
1

Γ4

e(10),

ε(8) =
1

Γ5

e(11) +
1

Γ6

e(12).

Second variation of energy-momentum along ε(j), j = 1, .., 8 is

D2Hµe|ε(j),j=1,..,8 = (dij)i=1,..,8,j=1,..,8.

And the second variation is definite if all of the even minors are positive as well as

products of odd minors.

In order to get some understanding of the stability region, we put Γi = 1, i =

1, . . . , 3. Then the 3-parametric projection of stable region is shown on Figure 3.4.

Since octahedron has four vertices in one plane and other two on perpendicu-

lar line to the plane, the only possibility for degenerate relative equilibria is the case

Γi = Γj, i, j = 1, .., 6.
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Figure 3.4: Stable region for octahedral configuration

Theorem 3.4.2. Degenerate octahedral configuration (J = 0) is a stable relative equi-

librium configuration.

Proof. Here we repeat the argument we used for tetrahedral configuration. Without loss

of generality, assume

Γ1 = Γ2 = Γ3 = Γ4 = Γ5 = Γ6 = 1. (3.4.2)

Using the coordinate form of the energy-momentum method with coordinates

z1 = 1√
2
, ϕ1 = 0,

z2 = 1√
2
, ϕ2 =

2π

3
,

z3 = 1√
2
, ϕ3 = −2π

3
,
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z4 = − 1√
2
, ϕ4 =

π

3
.

z5 = − 1√
2
, ϕ5 = −π

3
,

z6 = − 1√
2
, ϕ6 = π,

we get second variation of the energy-momentum functional with following eigenvalues

−2,−3

2
,−3

2
,−3

2
,
1

2
, 0, 0, 0

Since dim so(3) = 3, we have to have 3 zero eigenvalues. All the others correspond to

the transversal directions and since they have the same sign, by the Theorem 3.1.2 the

configuration is stable.

3.5 Stability of cubic configurations

As we know from the previous chapter, configuration matrix for the cube has five dimen-

sional null space. This means that in order to do the general stability analysis we have to

introduce 5 parameters and then study 8*2-4=12 dimensional second variation matrix.

To simplify computations and to be able to visualize the regions of stability in this sec-

tion we will study stability of superposition of the axis-symmetric cubic configurations

which are represented on Figure 3.5.

Theorem 3.5.1. Cubic configurations are nonlinearly stable if

(
6Γ2 − Γα (Γα + 3Γβ)

)
> 0,

B1,1B2i−1,2i−1 > 0,

B2i,2i > 0, i = 1, .., 5.
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Figure 3.5: Superposition of axis-symmetric cubic configurations

where Bi,i is ith principal minor of B, which is given in Appendix B.

Proof. Since the configurations are axis-symmetric, it is convenient to use cylindrical

coordinates aligned with vector J. If we chose coordinates of the vertices of the cube in

the form (2.3.3) and then use symmetry induced basis for the space C1 we get following

matrix of second variation

D2Hµe |C1 =


−64

3
(Γ2 − Γ2

α) 0 0

0 −27
8

(Γ2 − Γ2
α) (6Γ2 − Γα (Γα + 3Γβ)) 0

0 0 B

 ,

(3.5.1)

where matrix B is a 10x10 matrix with components given in Appendix B.

Since matrix D2Hµe|C1 has to be definite, using Sylvester criterion we will get the

conditions of the theorem.

Visualizations of these conditions are given on the plots Figure 3.6 and Figure 3.7.

The second plot is a plane Γ = 1. All the other planes Γ = z are just rescaled versions

of each other.
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Figure 3.6: Stability region for cubic configurations

As we can see from the plots, configurations (Γ,Γα,Γβ) ∈ {(1, 0, 0), (0, 1, 0)} are

not stable. We can even prove that they are unstable.

Theorem 3.5.2. Relative equilibrium configurations (Γ,Γα,Γβ) ∈ {(1, 0, 0), (0, 1, 0)}

are linearly unstable configurations.

Proof. Matrix of linearized system can be obtained from the second variation of Hamil-

tonian by multiplying the second variation by inverse of symplectic form (3.1.30).

Eigenvalues of linearized system for configuration (Γ,Γα,Γβ) = (1, 0, 0) are

i
√

3, i
√

3, i
√

3,−i
√

3,−i
√

3,−i
√

3,−
√

15

4
,−
√

15

4
,

√
15

4
,

√
15

4
, 0, 0, 0, 0, 0, 0
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Figure 3.7: Stability region for cubic configurations. Plane Γ = 1

And for configuration (Γ,Γα,Γβ) = (0, 1, 0)

−

√
65

64
+

√
145

32
,−

√
65

64
+

√
145

32
,

√
65

64
+

√
145

32
,

√
65

64
+

√
145

32
,−1

8

√
65− 2

√
145,

−1

8

√
65− 2

√
145,

1

8

√
65− 2

√
145,

1

8

√
65− 2

√
145,

i√
2
,− i√

2
, 0, 0

As we can see both of the configurations have eigenvalues with positive real parts. Thus

the configurations are unstable.

Notice that configuration (Γ,Γα,Γβ) = (0, 0, 1) is a vortex pair and, as it was proven

above, it is stable. But this stability is not captured by the energy-momentum method.
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Figure 3.8: Superposition of axis-symmetric icosahedral configurations

3.6 Stability of icosahedral configurations

From the previous chapter we know that configuration matrix of icosahedral config-

uration has the seven dimensional null space. Thus general stability analysis will be

in seven dimensional space. As in the cubic case, to simplify computations and to be

able to visualize the regions of stability we will study stability of superposition of the

axis-symmetric icosahedral configurations which are represented on Fig.3.8.

Theorem 3.6.1. Icosahedral configurations are nonlinearly stable if

(
10Γ2 − Γα

(
4Γα +

√
5Γβ

))
> 0,

−8
(
Γ2 − Γ2

α

)
C1,1 > 0,

−8
(
Γ2 − Γ2

α

)
D1,1 > 0,

C1,1C2i−1,2i−1 > 0,

C2i,2i > 0, i = 1, .., 4,

D1,1D2i−1,2i−1 > 0,

D2i,2i > 0, i = 1, .., 5.
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where Ci,i is ith principal minor of matrix C. Matrices C and D depend on the intensi-

ties Γi and their components can be found in Appendix B.

Proof. Since the configurations are axis-symmetric, we use cylindrical coordinates

aligned with vector J. If we chose coordinates of the vertices of the icosahedron in

the form (2.3.4) and then use symmetry induced basis for the space C1 we get following

matrix of second variation

D2Hµe|C1 =


−8 (Γ2 − Γ2

α) 0 0 0

0 −25
2

(Γ2 − Γ2
α)
(
10Γ2 − Γα

(
4Γα +

√
5Γβ
))

0 0

0 0 C 0

0 0 0 D


,

(3.6.1)

where C is a 8× 8 matrix and D is a 10× 10 matrix6.

Since matrix D2Hµe|C1 has to be definite, using Sylvester criterion we get the con-

ditions of the theorem.

Visualizations of these conditions are given on the plots Fig.3.9 and Fig.3.10. The

second plot is a plane Γ = 1. Regions of stability are self-similar in each parallel section

of the region. This agrees with the observation that the problem allows linear rescaling

of Γ’s.

Notice, that in contrast to the cubic case, icosahedral configuration (Γ,Γα,Γβ) =

(1, 0, 0) is a stable relative equilibrium configuration. It has growing with Γ region of

stability and this can be used to stabilize relative equilibrium, since if we increase Γ

sufficiently, we will get inside of the stability region.

6See Appendix B for details.
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Figure 3.9: Stability region for icosahedral configuration

As we noted in the previous section, configuration (Γ,Γα,Γβ) = (0, 0, 1) is a polar

vortex pair and is a stable configuration.

Theorem 3.6.2. Relative equilibrium configuration (Γ,Γα,Γβ) = (0, 1, 0) is linearly

unstable.

Proof. As before, if we multiply matrix of second variation of the Hamiltonian by the

inverse of the symplectic form then we can find the eigenvalues of linearized system

−1.98083, 1.98083, 1.98083,−1.98083, 1.86933i,−1.86933i, 1.86933i,−1.86933i,

1.43418,−1.43418,−1.43418, 1.43418, 1.32288i,−1.32288i,

−0.513637, 0.513637, 0.513637,−0.513637, 0, 0.
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Figure 3.10: Stability region for icosahedral configuration. Plane Γ = 1

As we can see there are six of them with positive real part. Thus the configuration is

linearly unstable.

3.7 Stability of dodecahedral configurations

As it was shown in previous chapter, configuration matrix for the dodecahe-

dron has 4 dimensional null space. In this section we will study stabil-

ity of axis-symmetric linear superposition of two vectors of intensities Γ =

(1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) and Γα = (1+φ, 1+φ, 1+φ, 1+φ, 1+

φ, φ, φ, φ, φ, φ, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0) (see Figure 3.11).

Theorem 3.7.1. Dodecahedral configurations Γ, Γα and Γ + Γα are unstable.
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Figure 3.11: Superposition of axis-symmetric icosahedral configurations

Proof. As in previous section, by using cylindrical coordinates and symmetrically

adapted basis we can find that the Eigenvalues of linearized system for the configuration

Γ are

0.+ 9.33742i, 0.− 9.33742i, 0.+ 9.33742i, 0.− 9.33742i,

0.+ 9.33742i, 0.− 9.33742i, 0.+ 9.33742i, 0.− 9.33742i, 0.+ 9.32281i,

0.− 9.32281i, 0.+ 9.32281i, 0.− 9.32281i, 0.+ 9.32281i,

0.− 9.32281i, 0.+ 9.32281i, 0.− 9.32281i, 0.+ 9.32281i,

0.− 9.32281i,−6.25625, 6.25625,−6.25625, 6.25625, 6.25625,−6.25625,

−5.44797, 5.44797,−5.44797, 5.44797, 5.44797, 5.44797, 5.44797,

−5.44797,−5.44797,−5.44797, 0, 0, 0, 0, 0, 0

Thus the configuration is unstable. The eigenvalues for Γα

0.+ 23.0426i, 0.− 23.0426i, 0.+ 18.832i, 0.− 18.832i, 0.+ 16.4675i,

0.− 16.4675i, 0.+ 14.8255i, 0.− 14.8255i, 0.+ 13.9323i, 0.− 13.9323i,

−12.3428, 12.3428, 0.+ 11.1227i, 0.− 11.1227i, 9.34178 + 0.63591i,
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9.34178− 0.63591i,−9.34178 + 0.63591i,−9.34178− 0.63591i,

0.+ 6.90988i, 0.− 6.90988i, 6.06939 + 0.59737i, 6.06939− 0.59737i,

−6.06939 + 0.59737i,−6.06939− 0.59737i,−3.38402 + .546296i,

−3.38402− 0.546296i, 3.38402 + 0.546296i, 3.38402− 0.546296i,

2.14816,−2.14816,−2.14816,−2.14816,−2.14816,

−2.14816, 2.14816, 2.14816, 2.14816, 2.14816, 0, 0

The configuration is unstable as well. And for the configuration Γα + Γ

0.+ 32.4149i, 0.− 32.4149i, 0.+ 28.4896i, 0.− 28.4896i,

0.+ 26.314i, 0.− 26.314i, 0.+ 23.7701i, 0.− 23.7701i,

0.+ 20.9321i, 0.− 20.9321i,−18.2794, 18.2794, 0.+ 17.5358i,

0.− 17.5358i, 15.7541 + 0.584415i,

15.7541− 0.584415i,−15.7541 + 0.584415i,−15.7541− 0.584415i, 0.+ 14.8255i,

0.− 14.8255i, 0.+ 14.3331i, 0.− 14.3331i, 0.+ 12.5094i,

0.− 12.5094i,−12.1304 + 0.891611i,

−12.1304− 0.891611i, 12.1304 + 0.891611i,

12.1304− 0.891611i, 0.+ 10.232i, 0.− 10.232i,

−9.79623 + 1.41522i,−9.79623− 1.41522i, 9.79623 + 1.41522i,

9.79623− 1.41522i,−8.47321, 8.47321, 0.+ 0.660075i, 0.− 0.660075i, 0, 0

Thus the configurations are unstable.
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Part II

Point singularities on a plane
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Chapter 4

Introduction

We start the the second part by introducing the model of complex point singularity. We

derive equations of motion by doing linear superposition of velocity vector fields. Then

we consider symmetries of the system.

4.1 Equations of motion

Consider the vector field at z = 0 governed by the complex dynamical system:

ż∗ =
Γ

2πi

1

z
, z(t) ∈ C, Γ ∈ C, t ∈ R > 0, (4.1.1)

where z∗ denotes the complex conjugate of z(t). Letting z(t) = r(t) exp(iθ(t)), Γ =

Γr + iΓi, gives:

ṙ =
Γi

2πr
, (4.1.2)

θ̇ =
Γr

2πr2
, (4.1.3)

from which it is easy to see that:

r(t) =

√(
Γi
2π

)
t+ r2(0), (4.1.4)
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θ(t) =



(
Γr
Γi

)
ln
((

Γr
Γi

)
t+ r2(0)

)
if Γi 6= 0

Γrt
2πr2(0)

+ θ(0) if Γi = 0.

(4.1.5)

When Γr 6= 0, Γi = 0, the field is that of a classical point-vortex (figure 4.1(a),(b));

when Γr = 0, Γi 6= 0 it is a source (Γi > 0) or sink (Γi < 0) (figure 4.1(c),(d)), while

when Γr 6= 0, Γi 6= 0, it is a spiral-source or sink (figure 4.1(e)-(h)).

(a) Γr > 0,Γi = 0 (b) Γr < 0,Γi = 0 (c) Γr = 0,Γi < 0 (d) Γr = 0,Γi > 0

(e) Γr < 0, Γi < 0 (f) Γr > 0, Γi > 0 (g) Γr > 0, Γi < 0 (h) Γr < 0, Γi > 0

Figure 4.1: All possible flowfields at the singular point z = 0 associated with the dynamical
system (4.1.1).

A collection of N of these point singularities, each located at z = zβ(t), β =

1, ..., N , by linear superposition, produces the field:

ż∗ =
1

2πi

N∑
β=1

Γβ
z − zβ

; z(t) ≡ x(t) + iy(t) ∈ C, Γβ ∈ C. (4.1.6)
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Then, if we advect each by the velocity field generated by all the others1, we arrive at

the complex dynamical system:

ż∗α =
1

2πi

N∑
β=1

′ Γβ
zα − zβ

, zα(t) ≡ xα(t) + iyα(t) ∈ C, Γβ ∈ C, (4.1.7)

where ′ indicates that β 6= α.

4.2 Symmetries of the system

It is easy to see that the system doesn’t have a canonical Hamiltonian structure. Indeed,

for example is case of 2 point singularities the equations of motion are

ż∗1 =
1

2πi

Γ2

z1 − z2

,

ż∗2 =
1

2πi

Γ1

z2 − z1

,

or in cartesian coordinates

ẋ1 =
1

2π

Γi2(x1 − x2) + Γr2(y1 − y2)

(x1 − x2)2 + (y1 − y2)2
,

ẏ1 =
1

2π

Γr2(x1 − x2)− Γr2(y1 − y2)

(x1 − x2)2 + (y1 − y2)2
,

ẋ2 =
1

2π

Γi1(x2 − x1) + Γr1(y2 − y1)

(x2 − x1)2 + (y2 − y1)2
,

ẏ2 =
1

2π

Γr1(x2 − x1)− Γr1(y2 − y1)

(x2 − x1)2 + (y2 − y1)2
,

1One might characterize this dynamical assumption by saying that each singularity ‘goes with the
flow’.
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where Γj = Γrj + iΓij, j = 1, 2. Then in order to have canonical Hamiltonian system we

must have

ẋj = C
∂H

∂yj
,

ẏj = −C ∂H
∂xj

,

where C ∈ {1,−1}. Thus

C
∂H

∂y1

=
1

2π

Γi2(x1 − x2) + Γr2(y1 − y2)

(x1 − x2)2 + (y1 − y2)2
, ⇒

H = C
Γr2
4π

ln[(x1 − x2)2 + (y1 − y2)2] + C
Γi2

x1 − x2

tan−1 y1 − y2

x1 − x2

+ f(x1) + g(x2, y2),

But

−C ∂H
∂x1

= − 1

2π

Γr2(x1 − x2)

(x1 − x2)2 + (y1 − y2)2
+

Γi2
(x1 − x2)2

tan−1 y1 − y2

x1 − x2

+

+
Γi2

x1 − x2

y1 − y2

(x1 − x2)2

(x1 − x2)

(x1 − x2)2 + (y1 − y2)2
+ f ′(x1) 6=

6= 1

2π

Γr2(x1 − x2)− Γr2(y1 − y2)

(x1 − x2)2 + (y1 − y2)2
.

This argument can be generalized for non canonical symplectic structures.

But even though the system is not Hamiltonian, it still has some symmetries.Since

the system is translation, rotation and scale invariant, it suggest that some kind of linear
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and angular momenta should be preserved. We now show that close analog of ”moment

of vorticity” is indeed preserved for the point singularities. Clearly

N∑
α=1

Γαż
∗
α =

1

2πi

N∑
α=1

N∑
β=1

′ ΓαΓβ
zα − zβ

= 0.

Thus

I =
N∑
α=1

Γ∗αzα,

is a conserved quantity. We call it conjugate moment of intensity.

Additionally, since the equations of motion can be rewritten as

d

dt
(zα − zγ)∗ =

N∑
β=1

′ Γβ
zα − zβ

−
N∑
β=1

′ Γβ
zγ − zβ

,

or

l̇∗αγ =
N∑
β=1

′Γβ

(
1

lαβ
− 1

lγβ

)
, (4.2.1)

where lαβ = zα − zβ is a vector connecting zα and zβ . This allows reduction of the

system by one complex variable (or by two real). The reconstruction of the original

variables can be done as follows

z1 = 0,

z2 = z1 − l12,

. . . ,

zN = zN−1 − lN−1,N . (4.2.2)
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This means that we can fix one of the singularities at the origin. The lαβ variable no

longer have the translational symmetry. But the rotational symmetry is still present and

gives the preservation of conjugate moment of intensity.
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Chapter 5

Fixed equilibria

In order to study fixed equilibria we use ideas developed in the first part. The config-

uration matrix approach is used to prove existence and uniqueness results. The singu-

lar value decomposition and Shannon entropy are used to find and characterize fixed

equilibria. More detailed study is performed for N = 2, 3, 4 point singularities fixed

equilibria, collinear fixed equilibria and equilibria along prescribed curves.

5.1 Existence and uniqueness

As we have shown earlier, equations of point singularity evolution in 2D are

ż∗α =
1

2πi

N∑
β=1

′ Γβ
zα − zβ

; zα(t) ≡ xα(t) + iyα(t) ∈ C, Γβ ∈ C, (5.1.1)

In order to find fixed equilibria we have to find solutions of point singularity equa-

tions (5.1.1) for which ż∗α(t) = 0. For this, we have the N coupled equations:

N∑
β=1

′ Γβ
zα − zβ

= 0, (α = 1, ...N), (5.1.2)

where we are interested in positions zα and strengths Γα for which this nonlinear alge-

braic system is satisfied. Since Eqn (5.1.2) is linear in the Γ’s, it can more productively

be written in matrix form

AΓ = 0 (5.1.3)
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whereA ∈ CN×N is evidently a skew-symmetric matrixA = −AT , with entries [aαα] =

0, [aαβ] = 1
zα−zβ

= −[aβα]. We call A the configuration matrix associated with the

interacting particle system (5.1.1). The collection of points {z1(0), z2(0), ..., zN(0)} in

the complex plane is called the configuration.

From (5.1.3), we can conclude that the points zα are in a fixed equilibrium configu-

ration if det(A) = 0, i.e. there is at least one zero eigenvalue of A. If the corresponding

eigenvector is real, the configuration is made up of point-vortices. If it is imaginary, it is

made up of sources and sinks. If it is complex, it is made up of spiral sources and sinks.

Notice also that if dz∗α
dt

= 0, then one can prove that d
nz∗α
dtn

= 0 for any n. It follows that:

Theorem 5.1.1. For a given configuration of N points {z1, z2, ..., zN} in the complex

plane, there exists a set of singularity strengths Γ for which the configuration is a fixed

equilibrium solution of the dynamical system (4.1.7) iff A has a kernel, or equivalently,

if there is at least one zero eigenvalue of A. If the nullspace dimension of A is one,

i.e. there is only one zero eigenvalue, the choice of Γ is unique (up to a multiplicative

constant). If the nullspace dimension is greater than one, the choice of Γ is not unique

and can be any linear combination of the basis elements of null(A).

Since A is skew-symmetric, it follows that

det(A) = det(−AT ) = (−1)N det(AT ) = det(AT ). (5.1.4)

Hence, for N odd, we have − det(AT ) = det(AT ), which implies det(AT ) = 0.

Theorem 5.1.2. When N is odd, A always has at least one zero eigenvalue, hence for

any configuration there exists a choice Γ ∈ C for which the system is a fixed equilibrium.

WhenN is even, there may or may not be a fixed equilibrium, depending on whether

or not A has a non-trivial nullspace. In general, we would like to determine a basis
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set for the nullspace of A for a given configuration, i.e. the set of all strengths for

which a given configuration remains fixed. Other important general properties of skew-

symmetric matrices are listed below:

1. The eigenvalues always come in pairs ±λ. If N is odd, there is one unpaired

eigenvalue that is zero.

2. If N is even, det(A) = Pf(A)2 ≥ 0, where Pf is the Pfaffian.

3. Real skew-symmetric matrices have pure imaginary eigenvalues.

Recall that every matrix can be written as the sum of a Hermitian matrix (B = B†)

and a skew-Hermitian matrix (C = −C†). To see this, notice

A ≡ 1

2
(A+ A†) +

1

2
(A− A†). (5.1.5)

Here, B ≡ 1
2
(A + A†) = B† and C ≡ 1

2
(A − A†) = −C†. A matrix is normal if

AA† = A†A, otherwise it is non-normal. If we calculate AA†−A†A, where A = B+C

as above, then it is easy to see that

AA† − A†A = 2(CB −BC). (5.1.6)

Therefore, if B = 0 or C = 0, A is normal.

Theorem 5.1.3. All Hermitian or skew-Hermitian matrices are normal.

The generic configuration matrix A arising from (5.1.3) is, however, non-normal.

For normal matrices, the following spectral-decomposition holds:

Theorem 5.1.4. A is a normal matrix⇔A is unitarily diagonalizable, i.e.

A = QΛQ† (5.1.7)
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where Q is unitary.

Here, the columns of Q are theN linearly independent eigenvectors of A that can be

made mutually orthogonal. The matrix Λ is a diagonal matrix with the N eigenvalues

down the diagonal1.

In general, however, for the system of interacting particles governed by (5.1.2),

(5.1.3), A ∈ CN×N will be a non-normal matrix. The most comprehensive decom-

position of A in this case is the singular value decomposition described in section 2.2.

Because of (5.1.3), we seek configuration matrices with one or more singular values that

are zero.

5.2 Collinear equilibria

For the special case in which all the particles lie on a straight line, there is no loss in

assuming zα = xα ∈ R. Then A ∈ RN×N , A is a normal skew-symmetric matrix, and

the eigenvalues are pure imaginary. As an example, consider the collinear case N = 3.

Let the particle positions be x1 < x2 < x3, with corresponding strengths Γ1, Γ2, Γ3.

The A matrix is then given by

A =


0 1

x1−x2

1
x1−x3

1
x2−x1

0 1
x2−x3

1
x3−x1

1
x3−x2

0

 . (5.2.1)

Since N is odd, we have det(A) = 0. The other two eigenvalues are given by:

λ123 = ±i

√
1

(x2 − x1)2
+

1

(x3 − x2)2
+

1

(x3 − x1)2
, (5.2.2)

1See [GVL96] for details.
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which is invariant under cyclic permutations of the indices (λ123 = λ231 = λ312). We

can scale the length of the configuration so that the distance between x1 and x3 is one,

hence without loss of generality, let x1 = 0, x2 = x, x3 = 1. The other two eigenvalues

are then given by the formula:

λ = ±i

√
(1− x+ x2)2

x2(1− x)2
. (5.2.3)

It is easy to see that the numerator has no roots in the interval (0, 1), hence the nullspace

dimension of A is one. The nullspace vector is then given (uniquely up to multiplicative

constant) by:

Γ =


1

−
(
x3−x2

x3−x1

)
(
x3−x2

x2−x1

)
 . (5.2.4)

For the special symmetric case x3 − x1 = 1, x3 − x2 = 1/2, x2 − x1 = 1/2, we have

Γ1 = 1,Γ2 = −1/2,Γ3 = 1. We show this case in figure 5.1 along with the separatrices

associated with the corresponding flowfield generated by the singularities. Since the

sum of the strengths of the three vortices is Γ1 + Γ2 + Γ3 = 1 − 1/2 + 1 = 3/2, the

far field is that of a point vortex of strength Γ = 3/2. Interestingly, for the collinear

cases, since A is real, the nullspace vector is either real, or if multiplied by i, is pure

imaginary. Hence, each collinear configuration of point vortices obtained with a given

Γ ∈ R is also a collinear configuration of sources/sinks with corresponding strengths

given by iΓ. The corresponding streamline pattern for the source/sink configuration, as

shown in the dashed curves of figure 5.1, is the orthogonal complement of the curves

corresponding to the point vortex case.
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Figure 5.1: N = 3 evenly distributed point vortices on a line with strengths Γ1 = 1,Γ2 =
−1

2 ,Γ3 = 1, in equilibrium. The far field is that of a point vortex at the center-of-vorticity of the
system. Solid streamline pattern is for point vortices, dashed streamline pattern is for source/sink
system. The patterns are orthogonal.

For N even, we cannot say a priori whether or not det(A) = 0 as the case for N = 2

shows. For this, the A matrix is

A =

 0 1
x1−x2

1
x2−x1

0

 =

 0 1
d

−1
d

0

 . (5.2.5)

The eigenvalues are λ = ±i/d, hence there is no equilibrium (except in the limit d →

∞).

We show in figures 5.2 and 5.3 two representative examples of collinear fixed point

vortex equilibria for N = 7, along with their corresponding global streamline patterns.

In figure 5.2 we deposit seven evenly spaced points on a line and solve for the nullspace

vector to obtain the singularity strengths (ordered from left to right)

Γ = (1.0000,−0.5536, 0.9212,−0.5797, 0.9212,−0.5536, 1.0000),(5.2.6)
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Figure 5.2: N = 7 evenly distributed point vortices on a line. The far field is that of a point
vortex at the center-of-vorticity of the system. Because of the symmetry of the spacing, the
vortex strengths are symmetric about the central point x4 which also corresponds to the center-
of-vorticity.

∑
α

Γα = 2.1555. (5.2.7)

Because of the even spacing, the strengths are symmetric about the central point x4

(Γ1 = Γ7,Γ2 = Γ6,Γ3 = Γ5), which is also the location of the center-of-vorticity∑7
α=1 Γαxα. Figure 5.3 shows a fixed equilibrium corresponding to seven points ran-

domly placed on a line. The nullspace vector for this case is (ordered from left to right)

Γ = (1.0000,−0.5071, 0.5342,−0.4007, 0.2815,−0.2505, 1.0743),(5.2.8)∑
α

Γα = 1.7317. (5.2.9)

In both cases, the singularities are all point vortices (or source/sink systems) hence are

examples of collinear equilibria such as those discussed in [Are07a, Are07b, Are09] and

[ANS+02] where the strengths are typically chosen as equal. The streamline pattern at
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Figure 5.3: N = 7 randomly distributed point vortices on a line. The far field is that of a point
vortex at the center-of-vorticity of the system.

infinity in both cases is that of a single point vortex of strength
∑7

α=1 Γα 6= 0 located at

the center of vorticity
∑7

α=1 Γαxα.

5.3 Triangular equilibria

The case N = 3 is somewhat special and worth treating separately. Given any three

points {z1, z2, z3} in the complex plane, the corresponding configuration matrix A is:

A =


0 1

z1−z2
1

z1−z3
1

z2−z1 0 1
z2−z3

1
z3−z1

1
z3−z2 0

 . (5.3.1)
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There is no loss of generality in choosing two of the points along the real axis, one at

the origin of our coordinate system, the other at x = 1. Hence we set z1 = 0, z2 = 1,

and we let z3 ≡ z. Then A is written much more simply:

A =


0 −1 −1

z

1 0 1
1−z

1
z

1
z−1

0

 . (5.3.2)

Since N is odd, one of the eigenvalues of A is zero. The other two are given by:

λ = ±i

√
1

z2
+

1

(1− z)2
+ 1 = ±i

√
(1− z + z2)2

z2(1− z)2
(5.3.3)

When the numerator is not zero, the nullspace dimension is one and it is easy to see that

the nullspace of A is given by:

Γ =


1
z−1

−1
z

1

 . (5.3.4)

However, the numerator is zero at the points:

z = exp(
πi

3
), exp(

5πi

3
), (5.3.5)

at which Re z = 1
2
, Im z = ±

√
3

2
. This forms an equilateral triangle in which case the

nullspace dimension is three. We have thus proven the following:

Theorem 5. For three point vortices, or for three sources/sinks, the only fixed equilibria

are collinear. For any three point singularities the nullspace dimension of A is one and

is given by (5.3.7).
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We show a fixed equilibrium equilateral triangle state in figure 5.4 along with the

corresponding streamline pattern.

Figure 5.4: N = 3 equilateral triangle configuration with corresponding streamline pattern. The
strengths are given by Γ1 = 1.0000, Γ2 = −0.5000 + 0.8660i, Γ3 = −0.5000 + 0.8660i.

Equilateral triangular equilibria

As it was pointed before, equilateral triangle has all of the eigenvalues equal to zero.

Without loss of generality assume positions of point singularities are located at 0, 1, e
πi
3 .

Then

A =


0 −1 −e−πi3

e−
πi
3 0 1

1−e
πi
3

1 − 1

1−e
πi
3

0

 =


0 1 −1

2
+
√

3
2

−1 0 −1
2
−
√

3
2

1
2
−
√

3
2

1
2

+
√

3
2

0

 . (5.3.6)
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The three eigenvalues are 0. The nullspace of A is covered by

Γ =


1
z−1

−1
z

1

 . (5.3.7)

And since the characteristic equation for the matrixA is λ3 = 0, the configuration matrix

is nilpotent. Thus the two vectors from the orthogonal complement to the null space are

in lying in the invariant subspace of matrix A.

5.4 Equilibria along prescribed curves

We now ask a more general and interesting question. Given any curve in the complex

plane, if we distribute points {zα}, (α = 1, ..., N ) along the curve, is it possible to find a

strength vector Γ so that the configuration is fixed? The answer is yes, if N is odd, and

sometimes, if N is even.

Figures 5.5 - 5.11 show a collection of fixed equilibria along curves that we pre-

scribe. First, figure 5.5 shows 7 points places randomly in the plane, with the singularity

strengths obtained from the nullspace of A so that the system is an equilibrium. The

strengths are given by: Γ = (1.0000,−0.7958 + 1.0089i,−1.3563− 0.4012i, 0.0297 +

0.1594i, 0.9155+0.3458i,−2.0504−0.8776i,−0.1935−1.0802i)T with the sum given

by −2.4508 − 0.8449i. Thus, the far field is that of a spiral-sink configuration. Figure

5.6 shows the case of N = 7 points distributed evenly around a circle. The nullspace

vector is given by Γ = (1.0000,−0.9010 + 0.4339i, 0.6235 − 0.7818i,−0.2225 +

0.9749i,−0.2225 − 0.9749i, 0.6235 + 0.7818i,−0.9010 − 0.4339i)T . For this very
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symmetric case, the sum of the strengths is zero, hence in a sense, the far field van-

ishes. Figure 5.7 shows the case of N = 7 points placed at random positions on a cir-

cle. Here, the nullspace vector is given by Γ = (1.0000,−0.6342 + 0.4086i, 0.3699 −

0.5929i,−0.1501+0.6135i,−0.2483−0.9884i, 0.2901+0.3056i,−0.3595−0.2686i)T

The random placement of points breaks the symmetry of the previous case and

the sum of strengths is given by 0.2649 − 0.5222i which corresponds to a spiral-

sink. In figures 5.8 and 5.9 we show equilibrium distribution of points along

a curve we call a ‘flower-petal’, given by the formula r(θ) = cos(2θ), 0 ≤

θ ≤ 2π. In figure 5.8 we distribute them evenly on the curve, while in fig-

ure 5.9 we distribute them randomly. The particle strengths from the configuration

in figure 5.8 are Γ = (1.0000, 0.1824 + 0.1498i,−0.9892 − 0.9103i,−0.1378 −

0.5333i,−0.1378 + 0.5333i,−0.9892 + 0.9103i, 0.1824 − 0.1498i)T with sum equal-

ing −0.8892 corresponding to a far field point vortex. Figure 5.9 shows particles dis-

tributed randomly on the same flower-petal curve. Here, the particle strengths are

Γ = (1.0000, 0.2094 − 0.4071i,−0.3009 + 0.3003i, 0.0404 − 0.2864i,−0.1779 +

0.2773i, 0.4236 + 0.8052i,−0.4702 − 0.3304i)T , with sum given by .7244 + .3589i.

Hence the far field corresponds to a source-spiral.

The last two configurations, shown in figures 5.10 and 5.11 are equilibria dis-

tributed along figure eight curves, given by the formulas r(θ) = cos2(θ), 0 ≤

θ ≤ 2π. In figure 5.10 we distribute the points evenly around the curve, which

gives rise to strengths Γ = (1.0000,−0.2734 + 0.5350i, 0.0239 − 0.2080i, 0.1063 −

0.0517i, 0.1063 + 0.0517i, 0.0239 + 0.2080i,−0.2734 − 0.5350i)T , whose sum is

.7136, thus a far field point vortex. In contrast, when the points are distributed

randomly around the same curve, as in figure 5.11, the strengths are given by

Γ = (1.0000,−0.1054 + 0.5724i,−0.0174 − 0.4587i, 0.9208 + 1.2450i,−0.0460 −
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0.4577i,−0.5292 + 0.2371i,−0.2543− 0.0921i)T , with sum equaling .9685 + 1.0460i,

hence a far field source-spiral.

Figure 5.5: Fixed equilibrium for seven points placed at random locations in the plane. The far
field is a spiral-sink (figure 1(e)) with since

∑
Γα = −2.4508− 0.8449i.

5.5 Even number of singularities

As we showed before, point singularity configuration will be a fixed equilibria if

detA = 0. For even dimensional (N = 2n) skew-symmetric matrix A = (ai,j)1≤i,j≤2n

determinant is equal to

detA = (pf(A))2, (5.5.1)
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Figure 5.6: N = 7 evenly distributed points on a circle (dashed curve) in equilibrium. Because
of the symmetry of the configuration,

∑
Γα = 0, hence the far-field vanishes.

where pf(A) is a Pfaffian of matrix A defined as

pf(A) =
1

2nn!

∑
σ∈S2n

sign(σ)
n∏
i=1

aσ(2i−1),σ(2i) =, (5.5.2)

with S2n being symmetric group and sign(σ) signature of σ. Alternative definition

which we will use is

pf(A) =
2n∑
i=2

(−1)ia1,ipf(A1̂,̂i), (5.5.3)

where A1̂,̂i is matrix A with 1st and ith row and column removed. Also, by convention

Pfaffian of 0× 0 matrix is 1.

From (5.5.1) we see that first order root of Pfaffian is second order root of determi-

nant. Thus even dimensional matrix with Pfaffian equal to 0 has two dimensional null

space.
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Figure 5.7: N = 7 randomly distributed particles on a circle (dashed curve) in equilibrium along
with the corresponding streamline pattern. The far field streamline pattern is that of a spiral-sink
(figure 1(g)) since

∑
Γα = 0.2649− 0.5222i.

Four singularities

Since every even-dimensional skew symmetric matrix has paired eigenvalues (if λ is

its eigenvalue, then −λ is an eigenvalue as well) we can have either two dimensional or

four dimensional null space. Four dimensional null space has only zero matrix which is

not a configuration matrix for the singularity equilibrium. Thus we can have only two

dimensional null space.

As we have said before, determinant of even dimensional skew symmetric matrix

is a square of the Pfaffian of the matrix. This will give us following condition for the

positions of singularities

1

(z2 − z3) 2 (z1 − z4) 2
+

1

(z1 − z3) 2 (z2 − z4) 2
+

1

(z1 − z2) 2 (z3 − z4) 2
= 0.(5.5.4)
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Figure 5.8: N = 7 evenly distributed particles in equilibrium on the curve r(θ) = cos(2θ)
(dashed curve) along with the corresponding streamline pattern. The far field corresponds to a
point vortex since

∑
Γα = −0.8892.

Since the equilibrium configuration of singularities is translation, rotation and scale

invariant, without loss of generality we can assume z1 = 0, z2 = 1. Then if we choose

z3 = a we will get following equation for the fourth position z4 = x

1

(a− y)2
+

1

a2(y − 1)2
+

1

(a− 1)2y2
= 0. (5.5.5)

The solutions are

z4 =
a+ a2 ±

√
3
√
a2 − 2a3 − a4

2 (1− a+ a2)
. (5.5.6)

Thus we proved

Theorem 5.5.1. For any initial positions of three out four point singularities there exist

at least one position for the fourth one. For any configuration of four point singularities

the null space dimension is two.
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Figure 5.9: N = 7 randomly distributed particles in equilibrium on the curve r(θ) = cos(2θ)
(dashed curve). The far field corresponds to a source-spiral (figure 1(f)) since

∑
Γα = 0.7244+

0.3589i.

For example, if we chose z3 = 1+i, then z4 = 3
2
−
√

3
2

+i
(
−1

2
+
√

3
2

)
. Demonstration

of this configuration is given on Figure 5.12.

Six and more singularities

Using the same technique as above, we can build the equation for one unknown

coordinate. First N − 1 we can choose at random and then since the equation for the

unknown coordinate can be solved in complex numbers, the fundamental theorem of

algebra guaranties that at leas one solution exist. Thus for even N there are many fixed

equilibria of point singularities.

We give some examples of the configurations for N = 6, 8 on Figure 5.13 and

Figure 5.14.
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Figure 5.10: N = 7 evenly distributed particles in equilibrium on the curve r(θ) = cos2(θ)
(dashed curve). The far field corresponds to a point vortex since

∑
Γα = 0.7136.

5.6 Classification of equilibria in terms of the singular

spectrum

Tables 5.1 - 5.6 show the complete singular spectrum for all the equilibria considered

in this work. A common measure of ‘robustness’ associated with the configuration

matrix, hence the equilibrium, is the size of the ‘spectral gap’ as measured by the size

of the smallest non-zero singular value. From Table 5.2, the collinear state with points

distributed randomly and the figure-eight state with points distributed evenly (Table 5.4)

are the least robust in that their smallest non-zero singular values are closest to zero.
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Figure 5.11: N = 7 randomly distributed particles in equilibrium on the curve r(θ) = cos2(θ)
(dashed curve). The far field corresponds to a source-spiral (figure 1(f)) since

∑
Γα = 0.9685+

1.0460i.

Figure 5.12: Fixed equilibrium for four points with one placed at random location in the plane.
The far field is a spiral-sink (figure 1(e)) with since

∑
Γα = −1.0490− 1.1830i.
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Figure 5.13: Fixed equilibrium for six points with five placed at random location in the plane.
The far field is a spiral-sink (figure 1(e)) with since

∑
Γα = −1.0881− 1.3789i.

Figure 5.14: Fixed equilibrium for eight points with seven placed on a regular 7-gon. The far
field is a spiral-sink (figure 1(e)) with since

∑
Γα = 6.0000− 0.4565i.

107



Configuration σ (unormalized) σ (normalized) Shannon entropy
1.0000 0.5000 0.6931

Equilateral 1.0000 0.5000
0.00 0.00

1.0598 0.5000 0.6931
Isosceles (acute) 1.0598 0.5000

0.00 0.00
2.7203 0.5000 0.6931

Isosceles (obtuse) 2.7203 0.5000
0.00 0.00

1.2115 0.5000 0.6931
Arbitrary triangle 1.2115 0.5000

0.00 0.00

Table 5.1: Singular spectrum of triangular states (N = 3)

Configuration σ (unormalized) σ (normalized) Shannon entropy
4.5000 0.5000 0.6931

N = 3 4.5000 0.5000
0.00 0.00

2.5249 0.3214 1.5237
N = 7 (even) 2.5249 0.3214

1.6831 0.1428
1.6831 0.1428
0.8420 0.0357
0.00 0.00

6.3408 0.4457 1.0723
N = 7 (random) 6.3408 0.4457

2.0969 0.0487
2.0969 0.0487
0.7062 0.0055
0.7062 0.0055
0.0000 0.0000

Table 5.2: Singular spectrum of collinear states (N = 3, 7)
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Configuration σ (unormalized) σ (normalized) Shannon entropy
3.0000 0.3214 1.5236

N = 7 (even) 3.0000 0.3214
2.0000 0.1429
2.0000 0.1429
1.0000 0.0357
1.0000 0.0357
0.0000 0.0000
3.7954 0.3363 1.4700

N = 7 (random) 3.7954 0.3363
2.4250 0.1373
2.4250 0.1373
1.0631 0.0264
1.0631 0.0264
0.0000 0.0000

Table 5.3: Singular spectrum of circular states (N = 7)

Configuration σ (unormalized) σ (normalized) Shannon entropy
11.9630 0.4664 0.9651

N = 7 (even) 11.9630 0.4664
3.0001 0.0293
3.0001 0.0293
1.1454 0.0043
1.1454 0.0043
0.0000 0.0000
6.9337 0.3465 1.3929

N = 7 (random) 6.9337 0.3465
4.4357 0.1418
4.4357 0.1418
1.2769 0.0117
1.2769 0.0117
0.0000 0.0000

Table 5.4: Singular spectrum of figure eight states (N = 7)
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Configuration σ (unormalized) σ (normalized) Shannon entropy
5.9438 0.4447 1.1034

N = 7 (even) 5.9438 0.4447
1.8115 0.0413
1.8115 0.0413
1.0538 0.0140
1.0538 0.0140
0.0000 0.0000
8.0780 0.3875 1.3393

N = 7 (random) 8.0780 0.3875
3.8900 0.0899
3.8900 0.0899
1.9523 0.0226
1.9523 0.0226
0.0000 0.0000

Table 5.5: Singular spectrum of flower states (N = 7)

Configuration σ (unormalized) σ (normalized) Shannon entropy
3.1566 0.5000 0.6931

N = 4 (random) 3.1566 0.5000
0.0000 0.0000
0.0000 0.0000
1.7723 0.4592 0.9758

N = 6 (random) 0.4592 0.3875
0.5283 0.0408
0.5283 0.0408
0.0000 0.0000
0.0000 0.0000
4.0000 0.3810 1.3612

N = 8 (symmetric) 4.0000 0.3810
2.0000 0.0952
2.0000 0.0952
1.0000 0.0238
1.0000 0.0238
0.0000 0.0000
0.0000 0.0000

Table 5.6: Singular spectrum of even number states (N = 4, 6, 8)
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Chapter 6

Stability

In this chapter we perform linear stability analysis of the fixed equilibrium configura-

tions we found in the previous chapter.

6.1 Stability of triangular configurations

Without loss of generality we can assume z0
1 = (x0

1, y
0
1) = (−1, 0), z0

2 = (x0
2, y

0
2) =

(1, 0) and z0
3 = (x0

3, y
0
3) = (x, y) will be our changing parameters. Since all of the

triangular configurations have one dimensional null space (except collinear, which we

study in the next section) the parameter space is two dimensional.

From equations of motion (4.1.1) we have

1

2πi

N∑
β=1

′ Γβ
zα − zβ

=

= − i

2π

N∑
β=1

′ (Γ
r
β + iΓiβ)((xα − xβ) + i(yα − yβ))

(xα − xβ)2 + (yα − yβ)2
=

=
1

2π

N∑
β=1

′Γ
r
β(yα − yβ) + Γiβ(xα − xβ)− i(Γrβ(xα − xβ)− Γiβ(yα − yβ))

(xα − xβ)2 + (yα − yβ)2
.

Thus

ẋα =
1

2π

N∑
β=1

′Γ
i
β(xα − xβ) + Γrβ(yα − yβ)

(xα − xβ)2 + (yα − yβ)2
, (6.1.1)

ẏα =
1

2π

N∑
β=1

′Γ
r
β(xα − xβ)− Γiβ(yα − yβ)

(xα − xβ)2 + (yα − yβ)2
. (6.1.2)
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Matrix of the linearized system M = (mij)i,j=1,...,N has the components

mαα =
N∑
β=1

′ Γiβ
(x0

α − xβ)2 + (yα − yβ)2
+

+
N∑
β=1

′2(x0
α − xβ)(Γiβ(x0

α − xβ) + Γrβ(yα − yβ))

((x0
α − xβ)2 + (yα − yβ)2)2

, α = 1, . . . , N,

mαβ =
Γiβ

(x0
α − xβ)2 + (yα − yβ)2

+

+
2(x0

α − xβ)(Γiβ(x0
α − xβ) + Γrβ(yα − yβ))

((x0
α − xβ)2 + (yα − yβ)2)2

, α, β = 1, . . . , N,

mγα =
N∑
β=1

′ Γrβ
(x0

α − xβ)2 + (yα − yβ)2
+

+
N∑
β=1

′2(x0
α − xβ)(Γrβ(x0

α − xβ)− Γiβ(yα − yβ))

((x0
α − xβ)2 + (yα − yβ)2)2

, α = 1, . . . , N, γ = α +N,

mβα =
Γrβ

(x0
α − xβ)2 + (yα − yβ)2

+

+
2(x0

α − xβ)(Γrβ(x0
α − xβ)− Γiβ(yα − yβ))

((x0
α − xβ)2 + (yα − yβ)2)2

, α = 1, . . . , N, β = N + 1, . . . , 2N,

mαγ =
N∑
β=1

′ Γrβ
(x0

α − xβ)2 + (yα − yβ)2
+

+
N∑
β=1

′2(y0
α − yβ)(Γrβ(xα − xβ) + Γrβ(y0

α − yβ))

((xα − xβ)2 + (y0
α − yβ)2)2

, α = 1, . . . , N, γ = α +N,

mαβ =
Γrβ

(xα − xβ)2 + (y0
α − yβ)2

+

+
2(y0

α − yβ)(Γiβ(xα − xβ) + Γrβ(y0
α − yβ))

((xα − xβ)2 + (y0
α − yβ)2)2

, α = 1, . . . , N, β = N + 1, . . . , 2N,

mαα =
N∑
β=1

′ −Γiβ
(xα − xβ)2 + (y0

α − yβ)2
+

+
N∑
β=1

′2(y0
α − yβ)(Γrβ(xα − xβ)− Γiβ(y0

α − yβ))

((xα − xβ)2 + (y0
α − yβ)2)2

, α = N + 1, . . . , 2N,

mαβ =
−Γiβ

(xα − xβ)2 + (y0
α − yβ)2

+ (6.1.3)
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+
2(y0

α − yβ)(Γrβ(xα − xβ)− Γiβ(y0
α − yβ))

((xα − xβ)2 + (y0
α − yβ)2)2

, α, β = N + 1, . . . , 2N,

where Γα = Γrα + iΓiα is the intensity of α-th singularity.

By plugging in values for x0
i and y0

i and using the vector of intensities

Γ1 = −−x1 + x2 − i(y1 + y2)

x2 − x3 + i(y2 − y3)
,

Γ2 = −x1 − x2 + i(y1 − y2)

x1 − x3 + i(y1 − y3)
,

Γ3 = 1,

we get the resulting matrix of linearized system

M1 = (M11M12),

where

M11 =



y(5−6x+x2+y2)
4π(1−2x+x2+y2)2

− y

4π(1−2x+x2+y2)
(−1+x)y

π(1−2x+x2+y2)2

y

4π(1+2x+x2+y2)
− y(5+6x+x2+y2)

4π(1+2x+x2+y2)2
(1+x)y

π(1+2x+x2+y2)2

− y(−3+2x+x2+y2)
π(1−2x+x2+y2)2(1+2x+x2+y2)

y(−3−2x+x2+y2)
π(1−2x+x2+y2)(1+2x+x2+y2)2

8xy(−1+x2+y2)
π(1−2x+x2+y2)2(1+2x+x2+y2)2

−1+x+x2−x3+3y2−xy2

4π(1−2x+x2+y2)2
−1+x

4π(1−2x+x2+y2)
1−2x+x2−y2

2π(1−2x+x2+y2)2

− 1+x
4π(1+2x+x2+y2)

−1+x2+x3+3y2+x(−1+y2)
4π(1+2x+x2+y2)2

1+2x+x2−y2

2π(1+2x+x2+y2)2

−1+x+x2−x3+3y2−xy2

π(1−2x+x2+y2)2(1+2x+x2+y2)

−1+x2+x3+3y2+x(−1+y2)
π(1−2x+x2+y2)(1+2x+x2+y2)2

2(1+x4−2y2−3y4−2x2(1+y2))
π(1−2x+x2+y2)2(1+2x+x2+y2)2


,

and

M12 =



1−x2+x3−3y2+x(−1+y2)
4π(1−2x+x2+y2)2

− −1+x
4π(1−2x+x2+y2)

−1+2x−x2+y2

2π(1−2x+x2+y2)2

1+x
4π(1+2x+x2+y2)

−−1+x2+x3+3y2+x(−1+y2)
4π(1+2x+x2+y2)2

− 1+2x+x2−y2

2π(1+2x+x2+y2)2

1−x2+x3−3y2+x(−1+y2)
π(1−2x+x2+y2)2(1+2x+x2+y2)

− −1+x2+x3+3y2+x(−1+y2)
π(1−2x+x2+y2)(1+2x+x2+y2)2

−2−2x4+4y2+6y4+4x2(1+y2)
π(1−2x+x2+y2)2(1+2x+x2+y2)2

y(5−6x+x2+y2)
4π(1−2x+x2+y2)2

− y

4π(1−2x+x2+y2)
(−1+x)y

π(1−2x+x2+y2)2

y

4π(1+2x+x2+y2)
− y(5+6x+x2+y2)

4π(1+2x+x2+y2)2
(1+x)y

π(1+2x+x2+y2)2

− y(−3+2x+x2+y2)
π(1−2x+x2+y2)2(1+2x+x2+y2)

y(−3−2x+x2+y2)
π(1−2x+x2+y2)(1+2x+x2+y2)2

8xy(−1+x2+y2)
π(1−2x+x2+y2)2(1+2x+x2+y2)2


.

113



Figure 6.1: Unstable region for triangular configuration

The matrix is too complex for further analytic investigation. But we can find eigen-

vectors numerically for big enough region. The resulting region of linear instability is

shown on Figure 6.1.

The points A = (0,
√

3) and B = (0,
√

3) represent equilateral triangle configura-

tions. The eigenvalues for the equilateral triangle are

0, 0, 0, 0, 0, 0.

Thus the equilateral triangle configurations are neutrally stable.
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6.2 Stability of collinear configurations

For the 3 singularities collinear equilibria, we can choose the first two to be x1 = 0 and

x2 = 1. The last one will be changing parameter x3 = x. The corresponding vector of

intensities is

Γ1 =
x1 − x2

x2 − x3

,Γ2 =
−x1 + x2

x1 − x3

,Γ3 = 0.

Then the matrix of linearized system is

M =



0 0 0 −−1+x
2πx2

1
2πx

− 1
2πx2

0 0 0 1
2π−2πx

x
2π(−1+x)2 − 1

2π(−1+x)2

0 0 0 1
2πx2−2πx3

1
2π(−1+x)2x

− 1
2π(−1+x)2x2

−1+x
2πx2 − 1

2πx
1

2πx2 0 0 0

− 1
2π−2πx

− x
2π(−1+x)2

1
2π(−1+x)2 0 0 0

1
2π(−1+x)x2 − 1

2π(−1+x)2x
1

2π(−1+x)2x2 0 0 0


,

The eigenvalues are

0, 0, 0, 0,− 3

2π
√
−x2 + 2x3 − x4

,
3

2π
√
−x2 + 2x3 − x4

. (6.2.1)

The roots of the denominator −x2 + 2x3 − x4 are 0 and 1. And by checking the values

in between we find that function is always negative. Thus we have

Theorem 6.2.1. The collinear fixed equilibrium for 3 collinear point singularities is

neutrally stable for any value of parameter x.

Another interesting collinear equilibrium configuration is the case when N = 5 and

point singularities are places symmetrically around the origin. Then let x1 = 0, x2 = 1,
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x3 = −1 and x4 = −x5 = x. After finding the vector of intensities and plugging it to

the matrix of linearized system we get

M =

 0 M12

M21 0

 ,

where

M12 =



1−x4
πx2+3πx4

3+x2

2π+6πx2
3+x2

2π+6πx2
− 1

2πx2
− 1

2πx2

1+14x2+x4

4π+8πx2−12πx4
3+11x2+49x4+x6

8
(
−1+x2

)2(
π+3πx2

) 3+x2

8π+24πx2
− 1

2π(−1+x)2
− 1

2π(1+x)2

1+14x2+x4

4π+8πx2−12πx4
3+x2

8π+24πx2
3+11x2+49x4+x6

8
(
−1+x2

)2(
π+3πx2

) − 1
2π(1+x)2

− 1
2π(−1+x)2

1+14x2+x4

4πx2+8πx4−12πx6
3+x2

2(−1+x)2
(
π+3πx2

) 3+x2

2(1+x)2
(
π+3πx2

) − 1+49x2+11x4+3x6

8x2
(
−1+x2

)2(
π+3πx2

) − 1
8πx2

1+14x2+x4

4πx2+8πx4−12πx6
3+x2

2(1+x)2
(
π+3πx2

) 3+x2

2(−1+x)2
(
π+3πx2

) − 1
8πx2

− 1+49x2+11x4+3x6

8x2
(
−1+x2

)2(
π+3πx2

)


,

M21 =



−1+x4

x2
(
π+3πx2

) − 3+x2

2π+6πx2
− 3+x2

2π+6πx2
1

2πx2
1

2πx2

− 1+14x2+x4

4π+8πx2−12πx4
− 3+11x2+49x4+x6

8
(
−1+x2

)2(
π+3πx2

) − 3+x2

8
(
π+3πx2

) 1
2π(−1+x)2

1
2π(1+x)2

− 1+14x2+x4

4π+8πx2−12πx4
− 3+x2

8
(
π+3πx2

) − 3+11x2+49x4+x6

8
(
−1+x2

)2(
π+3πx2

) 1
2π(1+x)2

1
2π(−1+x)2

− 1+14x2+x4

4πx2+8πx4−12πx6
− 3+x2

2(−1+x)2
(
π+3πx2

) − 3+x2

2(1+x)2
(
π+3πx2

) 1+49x2+11x4+3x6

8x2
(
−1+x2

)2(
π+3πx2

) 1
8πx2

− 1+14x2+x4

4πx2+8πx4−12πx6
− 3+x2

2(1+x)2
(
π+3πx2

) − 3+x2

2(−1+x)2
(
π+3πx2

) 1
8πx2

1+49x2+11x4+3x6

8x2
(
−1+x2

)2(
π+3πx2

)



The numerical simulation of the eigenvalues on the interval (−10; 10) shows that all of

them have zero real part. Thus symmetric configurations of five point singularities are

neutrally stable for x ∈ (−10; 10).
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Appendix A

Unit sphere restrictions for the

distances

In this appendix we will derive formulas for the volume of triangular pyramid along

with the conditions edges in order to have a unit circumradius.

Consider triangular pyramid ABCD (see Fig. A.1). Let

AB = a,AC = b, AD = c, BC = d,BD = e, CD = f,

PO1 = p1, PO2 = p2, BH = h,∠O1PO2 = α,OA = r,

where PO1⊥CD,PO2⊥CD and CP = PD.

First note that we can find all the flat angles from cosine law in each triangle. Also by

cosine law for spherical triangle we have

cos(∠ACB) = cos(∠BCD) cos(∠ACD) + sin(∠BCD) sin(∠ACD) cos(α),

(A.0.1)

where α is a dihedral angle between planes of triangles4ACD and4CBD. So

cos(α) =
cos(∠ACB)− cos(∠BCD) cos(∠ACD)

sin(∠BCD) sin(∠ACD)
=

=

b2 + d2 − a2

2bd
−
d2 + f 2 − e2

2df

b2 + f 2 − c2

2bf(
1−

(
d2+f2−e2

2df

)2
) 1

2
(

1−
(
b2+f2−c2

2bf

)2
) 1

2

=
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= 2
f 2(b2 + d2 − a2)− (d2 + f 2 − e2)(b2 + f 2 − c2)

(4d2f 2 − (d2 + f 2 − e2)2)
1
2 (4b2f 2 − (b2 + f 2 − c2)2)

1
2

.

Then from4BCD we have

BM = BC sin(∠BCD) = d

(
1−

(
d2 + f 2 − e2

2df

)2
) 1

2

,

And from4BHM we have

h = BH = BM sin(α) = d

(
1−

(
d2 + f 2 − e2

2df

)2
) 1

2

×

×

1−
4 [f 2(b2 + d2 − a2)− (d2 + f 2 − e2)(b2 + f 2 − c2)]

2

[4d2f 2 − (d2 + f 2 − e2)2] [4b2f 2 − (b2 + f 2 − c2)2]


1
2

.

And now we can find volume of parallelepiped built on vectors CA,CB,CD

Vp = 2S4ACDh = 2
1

4

(
(b2 + c2 + f 2)2 − 2(b4 + c4 + f 4)

) 1
2 h,

Or

Vp =
1

4
[a2f 2(−a2 + b2 + c2 + d2 + e2 − f 2) + b2e2(a2 − b2 + c2 + d2 − e2 + f 2)+

+c2d2(a2 + b2 − c2 − d2 + e2 + f 2)− a2b2d2 − a2c2e2 − b2c2f 2 − d2e2f 2]
1
2 .

And volume of pyramid ABCD is

V (a, b, c, d, e, f) = VABCD =
1

6
Vp =

=
1

24
[a2f 2(−a2 + b2 + c2 + d2 + e2 − f 2)+
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+b2e2(a2 − b2 + c2 + d2 − e2 + f 2)+

+c2d2(a2 + b2 − c2 − d2 + e2 + f 2)−

−a2b2d2 − a2c2e2 − b2c2f 2 − d2e2f 2]
1
2 .

Figure A.1: Pyramid inscribed in a sphere

Now to restrict the radius of the pyramid, we notice that VABCD = VOABC+VOABD+

VOACD + VOBCD. By setting OA = OB = OC = OD = r = 1 we get

VOABC = V (a, b, d) =
1

24

[
2(a2b2 + b2d2 + d2a2)− a4 − b4 − d4 − a2b2d2

] 1
2 ,(A.0.2)

VOABD = V (a, c, e) =
1

24

[
2(a2c2 + c2e2 + e2a2)− a4 − c4 − e4 − a2c2e2

] 1
2 ,(A.0.3)

VOACD = V (b, c, f) =
1

24

[
2(b2c2 + c2f 2 + f 2b2)− b4 − c4 − f 4 − b2c2f 2

] 1
2 ,(A.0.4)
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VOBCD = V (d, e, f) =
1

24

[
2(d2e2 + e2f 2 + f 2d2)− d4 − e4 − f 4 − d2e2f 2

] 1
2 .(A.0.5)

And thus the restrictions on the sides are

[
a2f 2(−a2 + b2 + c2 + d2 + e2 − f 2) + b2e2(a2 − b2 + c2 + d2 − e2 + f 2)+

+c2d2(a2 + b2 − c2 − d2 + e2 + f 2)− a2b2d2 − a2c2e2 − b2c2f 2 − d2e2f 2
] 1

2 =

=
[
2(a2b2 + b2d2 + d2a2)− a4 − b4 − d4 − a2b2d2

] 1
2 +

+
[
2(a2c2 + c2e2 + e2a2)− a4 − c4 − e4 − a2c2e2

] 1
2 +

+
[
2(b2c2 + c2f 2 + f 2b2)− b4 − c4 − f 4 − b2c2f 2

] 1
2 +

+
[
2(d2e2 + e2f 2 + f 2d2)− d4 − e4 − f 4 − d2e2f 2

] 1
2 .

(A.0.6)

Another useful relation we can get from the picture is value of a in terms of

b, c, d, e, f, r. From the right triangles4OO1P and4OO2P we have

cos∠OPO1 =
O1P

OP
,

cos∠OPO1 =
O2P

OP
.

Also, recall that ∠OPO1 + ∠OPO2 = α. From right triangles 4O1PC and 4O2PC

we have

O1P
2 = O1C

2 −
(
CD

2

)2

=
d2e2f 2

(d+ e+ f)(−d+ e+ f)(d− e+ f)(d+ e− f)
− f 2

4
,

O2P
2 = O2C

2 −
(
CD

2

)2

=
b2c2f 2

(b+ c+ f)(−b+ c+ f)(b− c+ f)(b+ c− f)
− f 2

4
.
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From right triangle4OPC we have

OP 2 = r2 − f 2

4

Now, since

cosα = cos∠OPO1 cos∠OPO2 − sin∠OPO1 sin∠OPO2,

from (A.0.1) we have

cos∠ACB =
(b2 − c2 + f 2) (d2 − e2 + f 2)

4bdf 2
+

+

√
1− (b2 − c2 + f 2)2

4b2f 2

√
1− (d2 − e2 + f 2)2

4d2f 2
×(√

f 2 (b2 + c2 − f 2)2(
b4 + (c2 − f 2)2 − 2b2 (c2 + f 2)

)
(f 2 − 4r2)

×√
f 2 (d2 + e2 − f 2)2(

d4 + (e2 − f 2)2 − 2d2 (e2 + f 2)
)

(f 2 − 4r2)
−

−

√
1− f 2 (b2 + c2 − f 2)2(

b4 + (c2 − f 2)2 − 2b2 (c2 + f 2)
)

(f 2 − 4r2)
×√

1− f 2 (d2 + e2 − f 2)2(
d4 + (e2 − f 2)2 − 2d2 (e2 + f 2)

)
(f 2 − 4r2)

)
,

and from triangle4ABC

a2 = b2 + c2 − 2bc cos∠ACB, ⇒

a2 = b2 + c2 − 2bc

(
(b2 − c2 + f 2) (d2 − e2 + f 2)

4bdf 2
+
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+

√
1− (b2 − c2 + f 2)2

4b2f 2

√
1− (d2 − e2 + f 2)2

4d2f 2
×(√

f 2 (b2 + c2 − f 2)2(
b4 + (c2 − f 2)2 − 2b2 (c2 + f 2)

)
(f 2 − 4r2)

×√
f 2 (d2 + e2 − f 2)2(

d4 + (e2 − f 2)2 − 2d2 (e2 + f 2)
)

(f 2 − 4r2)
−

−

√
1− f 2 (b2 + c2 − f 2)2(

b4 + (c2 − f 2)2 − 2b2 (c2 + f 2)
)

(f 2 − 4r2)
×√

1− f 2 (d2 + e2 − f 2)2(
d4 + (e2 − f 2)2 − 2d2 (e2 + f 2)

)
(f 2 − 4r2)

))
.

122



Appendix B

Components of second variation for

cube and icosahedron

Matrix B can be written as

B =



B1 B2 B3 B4 B5

B2 B6 B7 B8 B9

B3 B7 B10 B11 B12

B4 B8 B11 B13 B14

B5 B9 B12 B14 B15


,

where Bi, i = 1, .., 15 are 2× 2 matrices

B1 =

 − 27
16

(
Γ2 − Γ2

α

) (
6Γ2 − Γα

(
Γα + 3Γβ

))
0

0 − 4
3

(
9Γ4 − 10Γ2

αΓ2 + Γ4
α

)
 ,

B2 =

 27
128

√
3
(
Γ2 − Γ2

α

) (
15Γ + 5Γα + 6Γβ

)
− 27

128

(
Γ2 − Γ2

α

) (
15Γ + 5Γα + 6Γβ

)
− 1

16
(Γ− Γα) (Γ + Γα) (45Γ + 29Γα) − 1

16

√
3 (Γ− Γα) (Γ + Γα) (45Γ + 29Γα)

 ,

B3 =

 0 − 27
64

(
Γ2 − Γ2

α

) (
15Γ− 5Γα − 6Γβ

)
− 1

8
(45Γ− 29Γα) (Γ− Γα) (Γ + Γα) 0

 ,

B4 =

 9
32

√
3
2

(
Γ2 − Γ2

α

) (
Γ + Γβ

) (
33Γ + 13Γα + 12Γβ

)
− 9(Γ2−Γ2

α)(Γ−Γβ)(15Γ−5Γα+12Γβ)
32
√

2

− 21(Γ−Γα)(Γ+Γα)2(Γ+Γβ)
4
√

2
− 15

4

√
3
2

(Γ− Γα) (Γ + Γα) 2
(
Γ− Γβ

)
 ,

B5 =

 − 81
16

√
3
2

(
Γ2 − Γ2

α

) (
Γ2 − Γ2

β

) 81(Γ2−Γ2
α)
(
Γ2−Γ2

β

)
16
√

2

3(Γ2−Γ2
α)
(
Γ2−Γ2

β

)
2
√

2
3
2

√
3
2

(
Γ2 − Γ2

α

) (
Γ2 − Γ2

β

)
 ,
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B6 =

 − 3
32

(Γ + Γα)
(
58Γ + 5Γα + 27Γβ

)
0

0 − 3
32

(Γ + Γα)
(
58Γ + 5Γα + 27Γβ

)
 ,

B7 =

 − 3
2

(
Γ2 − Γ2

α

)
3
2

√
3
(
Γ2 − Γ2

α

)
3
2

√
3
(
Γ2
α − Γ2

)
− 3

2

(
Γ2 − Γ2

α

)
 ,

B8 =

 − 9(Γ+Γα)(Γ+Γβ)(15Γ+5Γα+6Γβ)
8
√

2
0

0 − 9(Γ+Γα)(Γ−Γβ)(5Γ+3Γβ)
4
√

2

 ,

B9 =

 45(Γ+Γα)
(
Γ2−Γ2

β

)
8
√

2
0

0
45(Γ+Γα)

(
Γ2−Γ2

β

)
8
√

2

 ,

B10 =

 − 3
32

(Γ− Γα)
(
58Γ− 5Γα − 27Γβ

)
0

0 − 3
32

(Γ− Γα)
(
58Γ− 5Γα − 27Γβ

)
 ,

B11 =

 − 45(Γ2−Γ2
α)(Γ+Γβ)

16
√

2
0

45
16

√
3
2

(
Γ2 − Γ2

α

) (
Γ + Γβ

)
0

 ,

B12 =

 45(Γ−Γα)
(
Γ2−Γ2

β

)
16
√

2
45
16

√
3
2

(Γ− Γα)
(

Γ2 − Γ2
β

)
− 45

16

√
3
2

(Γ− Γα)
(

Γ2 − Γ2
β

) 45(Γ−Γα)
(
Γ2−Γ2

β

)
16
√

2

 ,

B13 =

 a 0

0 b

 ,

B14 =

 1
4

(Γ + Γα)
(
39Γ + 9Γα + 32Γβ

) (
Γ2 − Γ2

β

)
0

0 1
4

(Γ + Γα)
(
15Γ + 9Γα − 22Γβ

) (
Γ2 − Γ2

β

)
 ,

B15 =

 − 1
2

(
12Γ2 − 5Γ2

β − 9ΓαΓβ

)(
Γ2 − Γ2

β

)
0

0 − 1
2

(
12Γ2 − 5Γ2

β − 9ΓαΓβ

)(
Γ2 − Γ2

β

)
 ,

a = −
1

4
(Γ + Γα)

(
Γ + Γβ

) (
116Γ2 + 145ΓβΓ + 9Γ2

α + 36Γ2
β + Γα

(
65Γ + 49Γβ

))
,

b = −
1

4
(Γ + Γα)

(
Γ− Γβ

) (
62Γ2 − 19ΓβΓ− 9Γ2

α − 36Γ2
β + Γα

(
5Γβ − 7Γ

))
.

Matrix C can be written as

C =


C1 C2 C3 C4

C2 C5 C6 C7

C3 C6 C8 C9

C4 C8 C9 C10


,
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where Ci, i = 1, .., 10 are 2× 2 matrices

C1 =

 − 1
8

(Γ + Γα)
(

203Γ + 37Γα + 25
√

5Γβ

)
0

0 − 1
8

(Γ + Γα)
(

203Γ + 37Γα + 25
√

5Γβ

)
 ,

C2 =

 27
128

(
−1 +

√
5
) (

Γ2 − Γ2
α

)
1

128

√
2643290 + 922258

√
5
(
Γ2
α − Γ2

)
1

128

√
1659290− 61742

√
5
(
Γ2
α − Γ2

)
27
128

(
−1 +

√
5
) (

Γ2 − Γ2
α

)
 ,

C3 =

 1
8

(Γ + Γα)
(

53Γ + 187Γα − 25
√

5Γβ

)
0

0 − 1
8

(Γ + Γα)
(

53Γ + 187Γα − 25
√

5Γβ

)
 ,

C4 =


1

128

(
877− 77

√
5
) (

Γ2 − Γ2
α

)
27
64

√
1
2

(
5 +
√

5
) (

Γ2 − Γ2
α

)
27
64

√
1
2

(
5 +
√

5
) (

Γ2 − Γ2
α

)
1

128

(
1123− 323

√
5
) (

Γ2 − Γ2
α

)
 ,

C5 =

 − 1
8

(Γ− Γα)
(

203Γ− 37Γα − 25
√

5Γβ

)
0

0 − 1
8

(Γ− Γα)
(

203Γ− 37Γα − 25
√

5Γβ

)
 ,

C6 =


1

128

(
−1123 + 323

√
5
) (

Γ2 − Γ2
α

)
− 27

64

√
1
2

(
5 +
√

5
) (

Γ2 − Γ2
α

)
− 27

64

√
1
2

(
5 +
√

5
) (

Γ2 − Γ2
α

)
1

128

(
−877 + 77

√
5
) (

Γ2 − Γ2
α

)
 ,

C7 =

 1
8

(Γ− Γα)
(

53Γ− 187Γα + 25
√

5Γβ

)
0

0 − 1
8

(Γ− Γα)
(

53Γ− 187Γα + 25
√

5Γβ

)
 ,

C8 =

 − 1
8

(Γ + Γα)
(

203Γ + 37Γα + 25
√

5Γβ

)
0

0 − 1
8

(Γ + Γα)
(

203Γ + 37Γα + 25
√

5Γβ

)
 ,

C9 =

 27
128

(
−1 +

√
5
) (

Γ2 − Γ2
α

)
1

128

√
1659290− 61742

√
5
(
Γ2
α − Γ2

)
1

128

√
2643290 + 922258

√
5
(
Γ2
α − Γ2

)
27
128

(
−1 +

√
5
) (

Γ2 − Γ2
α

)
 ,

C10 =

 − 1
8

(Γ− Γα)
(

203Γ− 37Γα − 25
√

5Γβ

)
0

0 − 1
8

(Γ− Γα)
(

203Γ− 37Γα − 25
√

5Γβ

)
 .
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Matrix D can be written as

D =



D1 D2 D3 D4 D5

D2 D6 D7 D8 D9

D3 D7 D10 D11 D12

D4 D8 D11 D13 D14

D5 D9 D12 D14 D15


,

where Di, i = 1, .., 15 are 2× 2 matrices

D1 =

 − 5
8

(Γ + Γα)
(

33Γ + 2Γα + 5
√

5Γβ

)
0

0 − 5
8

(Γ + Γα)
(

33Γ + 2Γα + 5
√

5Γβ

)
 ,

D2 =

 − 5
16

(
1 +
√

5
) (

Γ2 − Γ2
α

) 5(Γ2−Γ2
α)

4
√

2+ 2√
5

5(Γ2
α−Γ2)

4
√

2+ 2√
5

− 5
16

(
1 +
√

5
) (

Γ2 − Γ2
α

)
 ,

D3 =

 0 − 25(Γ2−Γ2
α)(5((5+

√
5)Γ+(1+

√
5)Γβ)−(5+

√
5)Γα)

2(5+
√

5)

− 25(Γ2−Γ2
α)(5((5+

√
5)Γ+(1+

√
5)Γβ)−(5+

√
5)Γα)

2(5+
√

5)
0

 ,

D4 =

 c 0

0 d

 ,

c = −
5

8
(Γ + Γα)

(
Γ + Γβ

) (
3
(

9 +
√

5
)

Γ + 3
(

1 +
√

5
)

Γα + 4
√

5Γβ

)
,

d =
5 (Γ + Γα)

(
Γ− Γβ

) ((
33 + 9

√
5
)

Γ− 3
(

1 +
√

5
)

Γα + 2
(

5 + 3
√

5
)

Γβ

)
4
(

3 +
√

5
) ,

D5 =

 15
4

√
5 (Γ + Γα)

(
Γ2 − Γ2

β

)
0

0 15
4

√
5 (Γ + Γα)

(
Γ2 − Γ2

β

)
 ,

D6 =

 − 5
8

(Γ− Γα)
(

33Γ− 2Γα − 5
√

5Γβ

)
0

0 − 5
8

(Γ− Γα)
(

33Γ− 2Γα − 5
√

5Γβ

)
 ,

D7 =

 e f

f e

 ,

e = −
25

8

√
10− 2

√
5
(
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Naturf. Ges. Zürich, 22:37–81, 1877.

[GVL96] G. H. Golub and C. F. Van Loan. Matrix computations. Johns Hopkins
University Press, 1996.

[Hal80] D. Hally. Stability of streets of vortices on surfaces of revolution with
a reflection symmetry. Journal of Mathematical Physics, 21(1):211–217,
1980.
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